Reinforced Concrete Design

- economical & common
- resist lateral loads

Reinforced Concrete Design

- flat plate
 - 5”-10” thick
 - simple formwork
 - lower story heights

- flat slab
 - same as plate
 - 2 ¼”-8” drop panels

Reinforced Concrete Design

- beam supported
 - slab depth ~ L/20
 - 8”-60” deep

- one-way joists
 - 3”-5” slab
 - 8”-20” stems
 - 5”-7” webs
Reinforced Concrete Design

- **two-way joist**
 - “waffle slab”
 - 3”-5” slab
 - 8”-24” stems
 - 6”-8” webs
- **beam supported slab**
 - 5”-10” slabs
 - taller story heights

Reinforced Concrete Design

- **simplified frame analysis**
 - strips, like continuous beams
- **moments require flexural reinforcement**
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Reinforced Concrete Design

- **one-way slabs (wide beam design)**
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - \(w_u \) from combos
 - uniform loads with \(L/D \leq 3 \)
 - \(\ell_n \) is clear span (+M) or average of adjacent clear spans (-M)
Reinforced Concrete Design

- two-way slabs - Direct Design Method
 - 3 or more spans each way
 - uniform loads with \(L/D \leq 3 \)
 - rectangular panels with long/short span \(\leq 2 \)
 - successive spans can't differ > longer/3
 - column offset no more than 10% span

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

Shear in Concrete

- critical section at \(d/2 \) from
 - column face, column capital or drop panel
Shear in Concrete

- at columns with waffle slabs

Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase

General Beam Design

- f_c' & f_y needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - $b:h$ of 1:1.5-1:2.5
 - b_w & b_l for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear

General Beam Design (cont’d)

- custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing

General Beam Design

- f_c' & f_y needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - $b:h$ of 1:1.5-1:2.5
 - b_w & b_l for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear

S = \frac{bh^2}{6}
Space “Frame” Behavior

- handle uniformly distributed loads well
- bending moment
 - tension & compression “couple” with depth
 - member sizes can vary, but difficult

Folded Plates

- increased bending stiffness with folding
- lateral buckling avoided

Space “Frame” Behavior

- shear at columns
- support conditions still important
 - point supports not optimal
- fabrication/construction can dominate design

Folded Plates

- common for roofs
- edges need stiffening

http://nisee.berkeley.edu/godden
Folded Plates

- State Farm Center (Assembly Hall), University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Concrete in Compression

- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear
- f'_c

Columns Reinforcement

- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (4 bars minimum)

Slenderness

- effective length in monolithic with respect to stiffness of joint: Ψ & k
- not slender when
 \[
 \frac{kL_u}{r} \leq 22
 \]
 not braced
Effective Length (revisited)

- relative rotation

\[\Psi = \frac{\sum EI}{l_c} \]

Column Behavior

Column Design

- \(\phi_c = 0.65 \) for ties, \(\phi_c = 0.75 \) for spirals
- \(P_o \) – no bending
- \(P_u \leq \phi_c P_n \)
 - ties: \(P_n = 0.8P_o \)
 - spiral: \(P_n = 0.85P_o \)
- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection
 \((P-\Delta) \)
Columns with Bending

• for ultimate strength behavior, ultimate strains can’t be exceeded
 – concrete 0.003
 – steel $\frac{f_y}{E}$

• P reduces with M

Design Methods

• calculation intensive
 – handbook charts
 – computer programs

Design Considerations

• bending at both ends
 – $P - \Delta$ maximum

• biaxial bending

• walls
 – unit wide columns
 – “deep” beam shear

• detailing
 – shorter development lengths
 – dowels to footings