concrete construction:
foundation design

Structural vs. Foundation Design

• structural design
 – choice of materials
 – choice of framing system
 – uniform materials and quality assurance
 – design largely independent of geology, climate, etc.

Foundation

• the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Structural vs. Foundation Design

• foundation design
 – cannot specify site materials
 – site is usually predetermined
 – framing/structure predetermined
 – site geology influences foundation choice
 – no site the same
 – no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, \(q_u \)
 - allowable bearing capacity, \(q_a = \frac{q_u}{S.F.} \)

Strength, \(q_a \)

![Strength Table](image1)

Bearing Failure

- shear

![Shear Diagram](image2)
Lateral Earth Pressure

- passive vs. active

active (trying to move wall)

passive (resists movement)

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length

- other materials (piles)
 - steel
 - wood
 - composite

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

• spread footings
• wall footings
• eccentric footings
• combined footings
• unsymmetrical footings
• strap footings

Shallow Footings

• spread footing
 – a square or rectangular footing supporting a single column
 – reduces stress from load to size the ground can withstand

Actual vs. Design Soil Pressure

• stress distribution is a function of
 – footing rigidity
 – soil behavior

• linear stress distribution assumed

Types of Foundations

• mat foundations
• retaining walls
• basement walls
• pile foundations
• drilled piers
Proportioning Footings

- **net allowable soil pressure, \(q_{\text{net}} \)**
 - \(q_{\text{net}} = q_{\text{allowable}} - h_f (\gamma_c - \gamma_s) \)
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden
- **design requirement with total unfactored load:** \(\frac{P}{A} \leq q_{\text{net}} \)

Concrete Spread Footings

- **failure modes**
 - shear
 - bending

Concrete Spread Footings

- **shear failure**
 - one way shear
 - two way shear

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- \(P_u \) = combination of factored D, L, W
- ultimate strength
 - \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 - plain concrete has shear strength
 - \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure
Over and Under-reinforcement

- reinforcement ratio for bending
 - \(\rho = \frac{A_s}{bd} \)
 - use as a design estimate to find \(A_s, b, d \)
 - max \(\rho \) from \(\varepsilon_{\text{steel}} \geq 0.004 \)
 - minimum for slabs & footings of uniform thickness \(\frac{A_s}{bh} = 0.002 \) grade 40/50 bars
 \(= 0.0018 \) grade 60 bars

Reinforcement Length

- need length, \(\ell_d \)
 - bond
 - development of yield strength

Column Connection

- bearing of column on footing
 - \(P_u \leq \phi P_n = \phi (0.85 f'_c A_1) \)
 \(\phi = 0.65 \) for bearing
 - confined: increase \(x \sqrt{\frac{A_2}{A_1}} \leq 2 \)
- dowel reinforcement
 - if \(P_u > P_b \), need compression reinforcement
 - min of 4 bars

Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads
Eccentrically Loaded Footings

- footings subject to moments

\[\begin{align*}
& P \\
& e \\
& M = Pe \\
& \text{by statics:}
\end{align*} \]

- soil pressure resultant force **may not** coincide with the centroid of the footing

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing

- for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Kern Limit

- boundary of e for no tensile stress

- triangular stress block with \(p_{\text{max}} \)

\[
\text{volume} = \frac{wpx}{2} = N
\]

\[
p_{\text{max}} = \frac{2N}{wx}
\]

Guidelines

- want resultant of load from pressure inside the middle third of base (kern)

- ensures stability with respect to overturning

\[
SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5
\]

- pressure under toe (maximum) \(\leq q_{\text{a}} \)

- shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line
- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types

- rectangular
- trapezoid
- strap or cantilever
 - prevents overturning of exterior column
- raft/mat
 - more than two columns over an extended area

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[q_{\text{max}} \leq q_{a} \]

\[R = P_1 + P_2 \]

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key
Retaining Walls

• considerations
 – overturning
 – settlement
 – allowable bearing pressure
 – sliding
 – (adequate drainage)

Retaining Wall Proportioning

• estimate size
 – footing size, \(B \) \(\approx \frac{2}{5} - \frac{2}{3} \) wall height (\(H \))
 – footing thickness \(\approx \frac{1}{12} - \frac{1}{8} \) footing size (\(B \))
 – base of stem \(\approx \frac{1}{10} - \frac{1}{12} \) wall height (\(H+h_f \))
 – top of stem \(\geq 12" \)

Retaining Walls

• procedure
 – proportion and check stability with working loads for bearing, overturning and sliding
 – design structure with factored loads
 \[
 SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2
 \]
 \[
 SF = \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2
 \]

Retaining Walls Forces

• design like cantilever beam
 – \(V_u \) & \(M_u \) for reinforced concrete
 – \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 – \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure
Retaining Wall Types

• "gravity" wall
 – usually unreinforced
 – economical & simple

• cantilever retaining wall
 – common

Deep Foundations

• usage
 – when spread footings, mats won’t work
 – when they are required to transfer the structural loads to good bearing material
 – to resist uplift or overturning
 – to compact soil
 – to control settlements of spread or mat foundations

Retaining Wall Types

• counterfort wall
 \{ very tall walls (> 20 - 25 ft) \}

• buttress wall

• bridge abutment

• basement frame wall (large basement areas)

Deep Foundation Types

– piles - usually driven, 6”-8” \(\phi \), 5’ +

– piers

– caissons \{ drilled, excavated, concreted (with or without steel) \}

– drilled shafts

– bored piles
 \{ 2.5’ - 10’/12’ \(\phi \) \}

– pressure injected piles
Deep Foundation Types

Piles Classified By Material

• timber
 – use for temporary construction
 – to densify loose sands
 – embankments
 – fenders, dolphins (marine)

• concrete
 – precast: ordinary reinforcement or prestressed
 – designed for axial capacity and bending with handling

Deep Foundations

• classification
 – by material
 – by shape
 – by function (structural, compaction...)

• pile placement methods
 – driving with pile hammer (noise & vibration)
 – driving with vibration (quieter)
 – jacking
 – drilling hole & filling with pile or concrete

Piles Classified By Material

• steel
 – rolled HP shapes or pipes
 – pipes may be filled with concrete
 – HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

- **end bearing pile (point bearing)**

 ![Diagram](image1)

 $P_a = A_p \cdot f_a$

 for use in soft or loose materials over a dense base

 $R_p \approx 0$

- **friction piles (floating)**

 ![Diagram](image2)

 $R_s = f(\text{adhesion})$

 P common in both clay & sand

 tapered: sand & silt

- **fender piles, dolphins, pile clusters**

 ![Diagram](image3)

 large # of piles in a small area

 - **compaction piles**
 - used to densify loose sands

 - **drilled piers**
 - eliminate need for pile caps
 - designed for bearing capacity (not slender)

Pile Caps and Grade Beams

- **like multiple column footing**

- **more shear areas to consider**