Mechanics of Materials

- external loads and their effect on deformable bodies
- use it to answer question if structure meets requirements of
 - stability and equilibrium
 - strength and stiffness
- other principle building requirements
 - economy, functionality and aesthetics

Knowledge Required

- material properties
- member cross sections
- ability of a material to resist breaking
- structural elements that resist excessive
 - deflection
 - deformation

Figure 2.34: An example of tension on a cantilever beam.
Problem Solving

1. STATICS:
 equilibrium of external forces, internal forces, stresses
2. GEOMETRY:
 cross section properties, deformations and conditions of geometric fit, strains
3. MATERIAL PROPERTIES:
 stress-strain relationship for each material obtained from testing

Stress

- stress is a term for the intensity of a force, like a pressure
- internal or applied
- force per unit area

\[stress = f = \frac{P}{A} \]

Design

- materials have a critical stress value where they could break or yield
 - ultimate stress
 - yield stress
 - compressive stress
 - fatigue strength
 - (creep & temperature)

Design (cont)

- we’d like \(f_{\text{actual}} \ll F_{\text{allowable}} \)
- stress distribution may vary: average
- uniform distribution exists IF the member is loaded axially (concentric)
Scale Effect

- **model scale**
 - material weights by volume, small section areas
- **structural scale**
 - much more material weight, bigger section areas
- scale for strength is not proportional:
 \[
 \frac{\gamma L^3}{L^2} = \gamma L
 \]

Normal Stress (direct)

- normal stress is normal to the cross section
 - stressed area is perpendicular to the load
 \[
 f_{torc} = \frac{P}{A}
 \]

Shear Stress

- stress parallel to a surface
 \[
 f_v = \frac{P}{A} = \frac{P}{td}
 \]

Bearing Stress

- stress on a surface by contact in compression
 \[
 f_p = \frac{P}{A} = \frac{P}{td}
 \]

Figure 5.7 Two columns with the same load, different stress.

Figure 5.10 Shear stress between two load blocks.

Figure 5.3 Column load.
Bending Stress

- normal stress caused by bending

\[f_b = \frac{Mc}{I} = \frac{M}{S} \]

Torsional Stress

- shear stress caused by twisting

\[f_v = \frac{T\rho}{J} \]

Structures and Shear

- what structural elements see shear?
 - beams
 - bolts
 - splices
 - slabs
 - footings
 - walls
 - wind
 - seismic loads

Bolts

- connected members in tension cause shear stress

- connected members in compression cause bearing stress
Single Shear

- seen when 2 members are connected

\[
f_v = \frac{P}{A} = \frac{P}{\pi \frac{d^2}{4}}
\]

Double Shear

- seen when 3 members are connected
- two areas

\[
f_v = \frac{P}{2A} = \frac{P}{2} = \frac{P}{\pi \frac{d^2}{4}}
\]

Bolt Bearing Stress

- compression & contact
- projected area

\[
f_p = \frac{P}{A_{projected}} = \frac{P}{td}
\]

Strain

- materials deform
- axially loaded materials change length
- bending materials deflect

\[
strain = \varepsilon = \frac{\Delta L}{L}
\]
Shearing Strain
- deformations with shear
- parallelogram
- change in angles
- stress: τ
- strain: $\gamma = \frac{\delta_s}{L} = \tan \phi \cong \phi$
 - unitless (radians)

Shearing Strain
- deformations with torsion
- twist
- change in angle of line
- stress: τ
- strain: $\gamma = \frac{\rho \phi}{L}$
 - unitless (radians)

Load and Deformation
- for stress, need P & A
- for strain, need δ & L
 - how?
 - TEST with load and measure
 - plot P/A vs. ε

Material Behavior
- every material has its own response
 - 10,000 psi
 - $L = 10$ in
 - Douglas Fir vs. steel?

Figure 5.20 Stress-strain diagram for various materials.
Behavior Types
• ductile - “necking”
• true stress
 \[f = \frac{P}{A} \]
• engineering stress
 – (simplified)
 \[f = \frac{P}{A_0} \]

Stress to Strain
• important to us in \(f - \varepsilon \) diagrams:
 – straight section
 – LINEAR-ELASTIC
 – recovers shape (no permanent deformation)

Hooke’s Law
• straight line has constant slope
• Hooke’s Law
 \[f = E \cdot \varepsilon \]
• \(E \)
 – Modulus of elasticity
 – Young’s modulus
 – units just like stress
Stiffness

- ability to resist strain

- steels
 - same E
 - different yield points
 - different ultimate strength

Isotropy & Anisotropy

- **ISOTROPIC**
 - materials with E same at any direction of loading
 - ex. steel

- **ANISOTROPIC**
 - materials with different E at any direction of loading
 - ex. wood is orthotropic

Elastic, Plastic, Fatigue

- elastic springs back
- plastic has permanent deformation
- fatigue caused by reversed loading cycles

Plastic Behavior

- ductile

Figure 5.20 Stress-strain diagram for various materials.

Figure 5.22 Stress-strain diagram for mild steel (A36) with key points highlighted.
Lateral Strain

- or “what happens to the cross section with axial stress”

\[\varepsilon_x = \frac{f_x}{E} \]

\[f_y = f_z = 0 \]

- strain in lateral direction
 - negative
 - equal for isometric materials \[\varepsilon_y = \varepsilon_z \]

Poisson’s Ratio

- constant relationship between longitudinal strain and lateral strain

\[\mu = -\frac{\text{lateral strain}}{\text{axial strain}} = -\frac{\varepsilon_y}{\varepsilon_x} = -\frac{\varepsilon_z}{\varepsilon_x} \]

\[\varepsilon_y = \varepsilon_z = -\frac{\mu f_x}{E} \]

- sign! \(0 < \mu < 0.5 \)

Calculating Strain

- from Hooke’s law

\[f = E \cdot \varepsilon \]

- substitute

\[\frac{P}{A} = E \cdot \frac{\delta}{L} \]

- get \(\Rightarrow \)

\[\delta = \frac{PL}{AE} \]

Orthotropic Materials

- non-isometric
- directional values of \(E \) and \(\mu \)
- ex:
 - plywood
 - laminates
 - polymer composites
Stress Concentrations

- why we use f_{ave}
- increase in stress at changes in geometry
 - sharp notches
 - holes
 - corners

Maximum Stresses

- if we need to know where f_{max} and f_v happen:

\[
\theta = 0^\circ \rightarrow \cos \theta = 1 \quad f_{max} = \frac{P}{A_o}
\]
\[
\theta = 45^\circ \rightarrow \cos \theta = \sin \theta = \sqrt{0.5} \quad f_{v\text{-max}} = \frac{P}{2A_o} = \frac{f_{max}}{2}
\]

Deformation Relationships

- physical movement
 - axially (same or zero)
 - rotations from axial changes

\[
\delta = \frac{PL}{AE} \quad \text{relates } \delta \text{ to } P
\]
Deformations from Temperature

- atomic chemistry reacts to changes in energy
- solid materials
 - can contract with decrease in temperature
 - can expand with increase in temperature
- linear change can be measured per degree

Thermal Deformation

- \(\alpha \) - the rate of strain per degree
- UNITS: \(\degree F \), \(\degree C \)
- length change: \(\delta_T = \alpha(\Delta T)L \)
- thermal strain: \(\varepsilon_T = \alpha(\Delta T) \)
 - no stress when movement allowed

Coefficients of Thermal Expansion

<table>
<thead>
<tr>
<th>Material</th>
<th>Coefficients ((\alpha)) [in./in./(\degree)F]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>3.0 x 10^{-6}</td>
</tr>
<tr>
<td>Glass</td>
<td>4.4 x 10^{-6}</td>
</tr>
<tr>
<td>Concrete</td>
<td>5.5 x 10^{-6}</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>5.9 x 10^{-6}</td>
</tr>
<tr>
<td>Steel</td>
<td>6.5 x 10^{-6}</td>
</tr>
<tr>
<td>Wrought Iron</td>
<td>6.7 x 10^{-6}</td>
</tr>
<tr>
<td>Copper</td>
<td>9.3 x 10^{-6}</td>
</tr>
<tr>
<td>Bronze</td>
<td>10.1 x 10^{-6}</td>
</tr>
<tr>
<td>Brass</td>
<td>10.4 x 10^{-6}</td>
</tr>
<tr>
<td>Aluminum</td>
<td>12.8 x 10^{-6}</td>
</tr>
</tbody>
</table>

Stresses and Thermal Strains

- if thermal movement is restrained stresses are induced
 1. bar pushes on supports
 2. support pushes back
 3. reaction causes internal stress
 \[
 f = \frac{P}{A} = \frac{\delta}{L} E
 \]
Superposition Method

- can remove a support to make it look determinant
- replace the support with a reaction
- enforce the geometry constraint

\[
\delta_p = -\frac{PL}{AE} \\
\delta_T = \alpha(\Delta T)L
\]

\[
f = -\frac{P}{A} = -\alpha(\Delta T)E
\]

Design of Members

- beyond allowable stress...
- materials aren’t uniform 100% of the time
 - ultimate strength or capacity to failure may be different and some strengths hard to test for

Factor of Safety

- accommodate uncertainty with a safety factor:
 \[
 \text{allowable load} = \frac{\text{ultimate load}}{F.S}
 \]

- with linear relation between load and stress:
 \[
 F.S = \frac{\text{ultimate load}}{\text{allowable load}} = \frac{\text{ultimate stress}}{\text{allowable stress}}
 \]

\[
f_u = \frac{P_u}{A}
\]
Load and Resistance Factor Design

- loads on structures are
 - not constant
 - can be more influential on failure
 - happen more or less often
 - UNCERTAINTY

\[
R_u = \gamma_D R_D + \gamma_L R_L \leq \phi R_n
\]

\(\phi\) - resistance factor
\(\gamma\) - load factor for (D)ead & (L)ive load