Center of Gravity

- location of equivalent weight
- determined with calculus

\[
\sum \Delta W = \int dW
\]

Centroid

- “average” x & y of an area
- for a volume of constant thickness
 - \(\Delta W = \gamma \Delta A \) where \(\gamma \) is weight/volume
 - center of gravity = centroid of area

\[
\bar{x} = \frac{\sum (x\Delta A)}{A}
\]
\[
\bar{y} = \frac{\sum (y\Delta A)}{A}
\]
Centroid

- for a line, sum up length

\[\bar{x} = \frac{\sum (x \Delta L)}{L} \]

\[\bar{y} = \frac{\sum (y \Delta L)}{L} \]

1st Moment Area

- math concept
- the moment of an area about an axis

\[Q_x = \bar{y}A \]

\[Q_y = \bar{x}A \]

Symmetric Areas

- symmetric about an axis

- symmetric about a center point

- mirrored symmetry

Composite Areas

- made up of basic shapes
- areas can be negative
- (centroids can be negative for any area)
Basic Procedure
1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table
5. Fill in table
6. Sum necessary columns
7. Calculate \bar{x} and \bar{y}

Area Centroids
• Table 7.1 – pg. 242

Moments of Inertia
• 2nd moment area
 – math concept
 – area x (distance)2
• need for behavior of
 – beams
 – columns

Moment of Inertia
• about any reference axis
• can be negative

\[I_y = \int x^2 \, dA \]
\[I_x = \int y^2 \, dA \]
• resistance to bending and buckling
Moment of Inertia

- same area moved away a distance
 - larger I

Polar Moment of Inertia

- for roundish shapes
- uses polar coordinates (r and θ)
- resistance to twisting

$$ J_o = \int r^2 dA $$

Radius of Gyration

- measure of inertia with respect to area

$$ r_x = \sqrt{\frac{I_x}{A}} $$

Parallel Axis Theorem

- can find composite I once composite centroid is known (basic shapes)

$$ I_x = I_{cx} + Ad_y^2 $$
$$ = \bar{I}_x + Ad_y^2 $$

$$ I = \sum \bar{I} + \sum Ad^2 $$

$$ \bar{I} = I - Ad^2 $$
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table with $A, \bar{x}, \bar{A}, \bar{y}, \bar{y}A, \bar{I}$'s, d's, and $A d^2$'s
5. Fill in table and get \hat{x} and \hat{y} for composite
6. Sum necessary columns
7. Sum \bar{I}'s and $A d^2$'s

\[
\begin{align*}
\bar{x} &= \frac{\int x A \, dx}{\int A \\
\bar{y} &= \frac{\int y A \, dx}{\int A}
\end{align*}
\]

Area Moments of Inertia

- Table 7.2 – pg. 252: (bars refer to centroid)
 - x, y
 - x', y'
 - C

\[
\begin{align*}
&\text{Rectangle} \\
&\bar{I}_x = \frac{1}{12}bh^3 \\
&\bar{I}_y = \frac{1}{12}b^3h
\end{align*}
\]

\[
\begin{align*}
&\text{Triangle} \\
&\bar{I}_x = \frac{1}{48}bh^3 \\
&\bar{I}_y = \frac{1}{48}b^3h
\end{align*}
\]

\[
\begin{align*}
&\text{Circle} \\
&\bar{I}_x = \frac{1}{4}\pi r^4 \\
&\bar{I}_y = \frac{1}{4}\pi r^4
\end{align*}
\]