wood construction: column design
Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations
Effect of Length (revisited)

- long & slender
- short & stubby
Critical Stresses (revisited)

• when a column gets stubby, crushing will limit the load

• real world has loads with eccentricity
Bracing (revisited)

- bracing affects shape of buckle in one direction
- both should be checked!
Wood Columns

- slenderness ratio = L/d_{min}
 - d_1 = smallest dimension
 - $l_e/d \leq 50$ (max)

 \[f_c = \frac{P}{A} \leq F'_c \]

 - where F'_c is the allowable compressive strength parallel to the grain
 - bracing common
 - posts, round, built-up
Allowable Wood Stress

\[F' = F_c \left(C_D \right) \left(C_M \right) \left(C_t \right) \left(C_F \right) \left(C_p \right) \]

- where:
 - \(F_c \) = compressive strength parallel to grain
 - \(C_D \) = load duration factor
 - \(C_M \) = wet service factor (1.0 dry)
 - \(C_t \) = temperature factor
 - \(C_F \) = size factor
 - \(C_p \) = column stability factor

(Fig. 9.23)
Strength Factors

- **wood properties and load duration,** C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- **stability,** C_p
 - combination curve - tables

\[
F'_c = F_c^* C_p = \left(F_c C_D \right) C_p
\]
Column Stability Factor \(C_p \)

Table 14 Column Stability Factor \(C_p \)

\[
F_{CE} = \frac{0.822E'}{(\%a)^2} \quad (c = 0.8 \text{sawn, } c = 0.9 \text{ glulam})
\]

\[
F_c' = C_p \cdot F_c^*\quad F_{CE} = \frac{30E}{(l/d)^2} \text{ for sawed posts} \quad F_{CE} = \frac{418E}{(l/d)^2} \text{ for glu-lam posts}
\]

<table>
<thead>
<tr>
<th>(F_{CE})</th>
<th>Sawed</th>
<th>Glu-Lam</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.01</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>0.02</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>0.03</td>
<td>0.030</td>
<td>0.030</td>
</tr>
<tr>
<td>0.04</td>
<td>0.040</td>
<td>0.040</td>
</tr>
<tr>
<td>0.05</td>
<td>0.049</td>
<td>0.050</td>
</tr>
<tr>
<td>0.06</td>
<td>0.059</td>
<td>0.060</td>
</tr>
<tr>
<td>0.07</td>
<td>0.069</td>
<td>0.069</td>
</tr>
<tr>
<td>0.08</td>
<td>0.079</td>
<td>0.079</td>
</tr>
<tr>
<td>0.09</td>
<td>0.088</td>
<td>0.089</td>
</tr>
<tr>
<td>0.10</td>
<td>0.098</td>
<td>0.099</td>
</tr>
<tr>
<td>0.11</td>
<td>0.107</td>
<td>0.109</td>
</tr>
<tr>
<td>0.12</td>
<td>0.117</td>
<td>0.118</td>
</tr>
<tr>
<td>0.13</td>
<td>0.126</td>
<td>0.128</td>
</tr>
<tr>
<td>0.14</td>
<td>0.136</td>
<td>0.138</td>
</tr>
<tr>
<td>0.15</td>
<td>0.145</td>
<td>0.147</td>
</tr>
<tr>
<td>0.16</td>
<td>0.154</td>
<td>0.157</td>
</tr>
<tr>
<td>0.17</td>
<td>0.164</td>
<td>0.167</td>
</tr>
<tr>
<td>0.18</td>
<td>0.173</td>
<td>0.176</td>
</tr>
<tr>
<td>0.19</td>
<td>0.182</td>
<td>0.186</td>
</tr>
</tbody>
</table>
Column Charts – Not in Appendix

Table 12 Allowable Column Loads—Selected Species/Sizes. (Continued)

<table>
<thead>
<tr>
<th>Eff. Col.</th>
<th>l/d</th>
<th>(l/d) sq</th>
<th>Fce</th>
<th>FcepFc'</th>
<th>Cp</th>
<th>Fc(ksi)</th>
<th>Pk</th>
<th>A = 56.25</th>
<th>A = 71.25</th>
<th>A = 86.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Len(ft)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>19.2</td>
<td>368.64</td>
<td>1302.08</td>
<td>1.30</td>
<td>1.13</td>
<td>.7731</td>
<td>.7315</td>
<td>773</td>
<td>841</td>
<td>43.5</td>
</tr>
<tr>
<td>13</td>
<td>20.8</td>
<td>432.64</td>
<td>1109.47</td>
<td>1.11</td>
<td>0.96</td>
<td>.7258</td>
<td>.6767</td>
<td>726</td>
<td>778</td>
<td>40.8</td>
</tr>
<tr>
<td>14</td>
<td>22.4</td>
<td>501.76</td>
<td>956.63</td>
<td>0.96</td>
<td>0.83</td>
<td>.6767</td>
<td>.6235</td>
<td>677</td>
<td>717</td>
<td>38.1</td>
</tr>
<tr>
<td>15</td>
<td>24.0</td>
<td>576.00</td>
<td>833.33</td>
<td>0.83</td>
<td>0.72</td>
<td>.6235</td>
<td>.5964</td>
<td>624</td>
<td>655</td>
<td>35.1</td>
</tr>
<tr>
<td>16</td>
<td>25.6</td>
<td>655.36</td>
<td>732.42</td>
<td>0.73</td>
<td>0.64</td>
<td>.5747</td>
<td>.5244</td>
<td>575</td>
<td>603</td>
<td>32.3</td>
</tr>
<tr>
<td>17</td>
<td>27.2</td>
<td>739.84</td>
<td>648.79</td>
<td>0.65</td>
<td>0.56</td>
<td>.5303</td>
<td>.4744</td>
<td>530</td>
<td>546</td>
<td>29.8</td>
</tr>
<tr>
<td>18</td>
<td>28.8</td>
<td>829.44</td>
<td>578.70</td>
<td>0.58</td>
<td>0.50</td>
<td>.4873</td>
<td>.4336</td>
<td>487</td>
<td>499</td>
<td>27.4</td>
</tr>
<tr>
<td>19</td>
<td>30.4</td>
<td>924.16</td>
<td>519.39</td>
<td>0.52</td>
<td>0.45</td>
<td>.4475</td>
<td>.3975</td>
<td>448</td>
<td>457</td>
<td>25.2</td>
</tr>
<tr>
<td>20</td>
<td>32.0</td>
<td>1024.00</td>
<td>468.75</td>
<td>0.47</td>
<td>0.41</td>
<td>.4122</td>
<td>.3673</td>
<td>412</td>
<td>422</td>
<td>23.2</td>
</tr>
<tr>
<td>21</td>
<td>33.6</td>
<td>1128.96</td>
<td>425.17</td>
<td>0.43</td>
<td>0.37</td>
<td>.3826</td>
<td>.3360</td>
<td>383</td>
<td>386</td>
<td>21.5</td>
</tr>
<tr>
<td>22</td>
<td>35.2</td>
<td>1239.04</td>
<td>387.40</td>
<td>0.39</td>
<td>0.34</td>
<td>.3518</td>
<td>.3118</td>
<td>352</td>
<td>359</td>
<td>19.8</td>
</tr>
<tr>
<td>23</td>
<td>36.8</td>
<td>1354.24</td>
<td>354.44</td>
<td>0.35</td>
<td>0.31</td>
<td>.3199</td>
<td>.2869</td>
<td>320</td>
<td>330</td>
<td>18.0</td>
</tr>
<tr>
<td>24</td>
<td>38.4</td>
<td>1474.56</td>
<td>325.52</td>
<td>0.33</td>
<td>0.28</td>
<td>.3035</td>
<td>.2615</td>
<td>304</td>
<td>301</td>
<td>17.1</td>
</tr>
<tr>
<td>25</td>
<td>40.0</td>
<td>1600.00</td>
<td>300.00</td>
<td>0.30</td>
<td>0.26</td>
<td>.2785</td>
<td>.2442</td>
<td>279</td>
<td>281</td>
<td>15.7</td>
</tr>
<tr>
<td>26</td>
<td>41.6</td>
<td>1730.56</td>
<td>277.37</td>
<td>0.28</td>
<td>0.24</td>
<td>.2615</td>
<td>.2267</td>
<td>262</td>
<td>261</td>
<td>14.7</td>
</tr>
<tr>
<td>27</td>
<td>43.2</td>
<td>1866.24</td>
<td>257.20</td>
<td>0.26</td>
<td>0.22</td>
<td>.2442</td>
<td>.2090</td>
<td>244</td>
<td>240</td>
<td>13.7</td>
</tr>
<tr>
<td>28</td>
<td>44.8</td>
<td>2007.04</td>
<td>239.16</td>
<td>0.24</td>
<td>0.21</td>
<td>.2267</td>
<td>.2000</td>
<td>227</td>
<td>230</td>
<td>12.8</td>
</tr>
<tr>
<td>29</td>
<td>46.4</td>
<td>2152.96</td>
<td>222.95</td>
<td>0.22</td>
<td>0.19</td>
<td>.2090</td>
<td>.1819</td>
<td>209</td>
<td>209</td>
<td>11.8</td>
</tr>
<tr>
<td>30</td>
<td>48.0</td>
<td>2304.00</td>
<td>208.33</td>
<td>0.21</td>
<td>0.18</td>
<td>.2000</td>
<td>.1728</td>
<td>200</td>
<td>199</td>
<td>11.3</td>
</tr>
</tbody>
</table>

DF-L No. 1 (P&T)
DF-L No. 1 & Btr Dim.Lum
Fc = 1000
Ec = 1500
E = 1.6
E = 1.8
Procedure for Analysis

1. calculate \(\frac{L_e}{d_{min}} \)
 - \(KL/d \) each axis, choose largest

2. obtain \(F'_{c} \)
 - compute
 \[
 F_{cE} = \frac{0.822 E_{min}'}{\left(\frac{l_e}{d}\right)^2} = \frac{K_{cE} E}{\left(\frac{l_e}{d}\right)^2}
 \]
 - \(K_{cE} = 0.3 \) sawn
 - \(K_{cE} = 0.418 \) glu-lam
 - \(E_{min}' = E_{min} (C_M)(C_t)(C_T)(C_i) \)

3. compute \(F'_c \approx F_c C_D \)

4. calculate \(F_{cE}/F'_c \) and get \(C_p \) (Table 9.3)

5. calculate \(F'_c = F'_c C_p \)
Procedure for Analysis (cont’d)

6. compute \(P_{\text{allowable}} = F'_c \cdot A \)
 • or find \(f_{\text{actual}} = P/A \)

7. is \(P \leq P_{\text{allowable}} \)? (or \(f_{\text{actual}} \leq F'_c \)?)
 • yes: OK
 • no: overstressed & no good
Procedure for Design

1. **guess a size** (pick a section)

2. **calculate** L_e/d_{min}
 - KL/d each axis, choose largest

3. **obtain** F'_c
 - compute
 $$F_{cE} = \frac{0.822 E'_{\text{min}}}{\left(\frac{l_e}{d}\right)^2} = \frac{K_{cE} E}{\left(\frac{l_e}{d}\right)^2}$$
 - $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam
 - $E'_{\text{min}} = E_{\text{min}} (C_M)(C_t)(C_T)(C_i)$

4. **compute** $F'_c \approx F_c C_D$

5. **calculate** F_{cE}/F'_c and get C_p (*Table 9.3*)
Procedure for Design (cont’d)

6. compute \(F'_c = F'_c C_p \)

7. compute \(P_{\text{allowable}} = F'_c \cdot A \)
 - or find \(f_{\text{actual}} = P/A \)

8. is \(P \leq P_{\text{allowable}} \)? (or \(f_{\text{actual}} \leq F'_c \)?)
 - yes: OK
 - no: pick a bigger section and go back to step 2.
Timber Construction by Code

• light-frame
 – light loads
 – 2x’s
 – floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 – normal spans of 20-25 ft or 6-7.5 m
 – plywood spans between joists
 – stud or load-bearing masonry walls
 – limited to around 3 stories – fire safety
Design of Columns with Bending

• satisfy
 – strength
 – stability
• pick
 – section
Design

• Wood

\[
\left[\frac{f_c}{F'_c} \right]^2 + \frac{f_{bx}}{F'_{bx} \left[1 - \frac{f_c}{F_{cEx}} \right]} \leq 1.0
\]

[] term – magnification factor for P-\(\Delta\)

\(F'_{bx}\) – allowable bending strength
Design Steps Knowing Loads

1. assume limiting stress
 - buckling, axial stress, combined stress
2. solve for r, A or S
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok
Laminated Timber Arches

- two & three hinged arches
- bent to wide range of curves
- bending and compression
- residual stress from laminating, C_c
Laminated Arch Design

- radius of curvature, \(R \), limited by lam thickness, \(t \)
 - \(R = 100t \) – southern pine & hardwoods
 - \(R = 125t \) – softwood
- \(r = \) radius to inside face of laminations
- \(C_c = 1 - 2000 \left(\frac{t}{r} \right)^2 \)
- \(F_b' = F_b (C_F C_c) \)