Wood Connections

Connectors

- joining
 - lapping
 - interlocking
 - butting
- mechanical
 - “third-elements”

- transfer load at a point, line or surface
 - generally more than a point due to stresses

Wood Connectors

- adhesives
 - used in a controlled environment
 - can be used with nails
- mechanical
 - bolts
 - lag bolts or lag screws
 - nails
 - split ring and shear plate connectors
 - timber rivets
Bolted Joints
- connected members in tension cause shear stress
- connected members in compression cause bearing stress

Tension Members
- members with holes have reduced area
- increased tension stress
- A_e is effective net area
 $$ f_t = \frac{P}{A_e} \left(or \frac{T}{A_e} \right) $$

Effective Net Area
- likely path to “rip” across
- bolts divide transferred force too

Single Shear
- seen when 2 members are connected
 $$ f_v = \frac{P}{A} = \frac{P}{\pi \frac{d^2}{4}} $$
Double Shear

- seen when 3 members are connected

$$\Sigma F = 0 = -P + 2(P/2)$$

$$f_v = \frac{P}{2A} = \frac{P/2}{A} = \frac{P}{\pi d^2/4}$$

Bolted Joints

- twisting

- tear out
 - shear strength
 - end distance & spacing

F2008abn

Bearing Stress

- compression & contact
- stress limited by species & grain direction to load
- projected area

$$f_p = \frac{P}{A_{projected}} = \frac{P}{td}$$

Nailed Joints

- tension stress (pullout)
- shear stress nails presumed to share load by distance from centroid of nail pattern

www.timber.org.au

Taylor & Line 2002

Wood Connections 9
Lecture 17
Foundations Structures
ARCH 331
F2008abn

Wood Connections 10
Lecture 17
Foundations Structures
ARCH 331
F2008abn

Wood Connections 11
Lecture 17
Foundations Structures
ARCH 331
F2008abn

Wood Connections 12
Lecture 17
Foundations Structures
ARCH 331
F2008abn
Nailed Joints

- sized by pennyweight units / length
- embedment length
- dense wood, more capacity

<table>
<thead>
<tr>
<th>Thickness, (t) (in.)</th>
<th>Nail Length, (L) (in.)</th>
<th>Nail Diameter, (D) (in.)</th>
<th>Pennyweight</th>
<th>Load per Nail for Douglas Fir-Larch, (G = 0.50, 2, \text{lb})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{8})</td>
<td>2</td>
<td>0.113</td>
<td>6d</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2(\frac{1}{2})</td>
<td>0.131</td>
<td>8d</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.148</td>
<td>10d</td>
<td>76</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>2</td>
<td>0.113</td>
<td>6d</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2(\frac{1}{2})</td>
<td>0.131</td>
<td>8d</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.148</td>
<td>10d</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>3(\frac{1}{2})</td>
<td>0.162</td>
<td>16d</td>
<td>92</td>
</tr>
</tbody>
</table>

Connectors Resisting Beam Shear

- plates with
 - nails
 - rivets
 - bolts
- splices
- \(V \) from beam load related to \(V_{\text{longitudinal}} \)

\[
\frac{V_{\text{longitudinal}}}{p} = \frac{VQ}{I}
\]

\[
nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p
\]

Vertical Connectors

- isolate an area with vertical interfaces