Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_c

Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Concrete Beams

- types
 - reinforced
 - precast
 - prestressed
- shapes
 - rectangular, I
 - T, double T’s, bulb T’s
 - box
 - spandrel
Concrete Beams

- shear
 - vertical
 - horizontal
 - combination:
 - tensile stresses at 45°

- bearing
 - crushing

Concrete

- low strength to weight ratio
- relatively inexpensive
 - Portland cement
 - types I - V
 - aggregate
 - course & fine
 - water
 - admixtures
 - air entraining
 - superplasticizers

Concrete

- hydration
 - chemical reaction
 - workability
 - water to cement ratio
 - mix design
- fire resistant
- cover for steel
- creep & shrinkage

Concrete

- placement (not pouring!)
- vibrating
- screeding
- floating
- troweling
- curing
- finishing
Reinforcement

• deformed steel bars (rebar)
 – Grade 40, \(F_y = 40 \text{ ksi} \)
 – Grade 60, \(F_y = 60 \text{ ksi} \) - most common
 – Grade 75, \(F_y = 75 \text{ ksi} \)
 – US customary in # of 1/8” \(\phi \)
• longitudinally placed
 – bottom
 – top for compression reinforcement

Composite Beams

• concrete
 – in compression
• steel
 – in tension
• shear studs

Reinforcement

• prestressing strand
• post-tensioning
• stirrups
• detailing
 – development length
 – anchorage
 – splices

Behavior of Composite Members

• plane sections remain plane
• stress distribution changes

\[f_1 = E_1 \epsilon = -\frac{E_1 y}{R} \]
\[f_2 = E_2 \epsilon = -\frac{E_2 y}{R} \]
Transformation of Material

- n is the ratio of E's
 \[n = \frac{E_2}{E_1} \]

- effectively widens a material to get same stress distribution

Stresses in Composite Section

- with a section transformed to one material, new I

 - stresses in that material are determined as usual
 - stresses in the other material need to be adjusted by n

\[
\frac{E_2}{E_1} = \frac{E_{\text{steel}}}{E_{\text{concrete}}}
\]

\[
f_c = -\frac{My}{I_{\text{transformed}}}
\]

\[
f_s = -\frac{Myn}{I_{\text{transformed}}}
\]

Reinforced Concrete - stress/strain

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent stress block
 - concrete takes no tension
 - steel takes tension
 - force ductile failure
Location of n.a.

- Ignore concrete below n.a.
- Transform steel
- Same area moments, solve for \(x \)

\[
 bx \cdot \frac{x}{2} - nA_s (d - x) = 0
\]

T sections

- N.a. equation is different if n.a. below flange

\[
 b_r h_f \left(x - \frac{h_f}{2} \right) + (x - h_f) b_w \left(x - h_f \right) \frac{1}{2} - nA_s (d - x) = 0
\]

ACI Load Combinations*

- \(1.4D \)
- \(1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R) \)
- \(1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (1.0L \text{ or } 0.5W) \)
- \(1.2D + 1.0W + 1.0L + 0.5(L_r \text{ or } S \text{ or } R) \)
- \(1.2D + 1.0E + 1.0L + 0.2S \)
- \(0.9D + 1.0W \)
- \(0.9D + 1.0E \)

*can also use old ACI factors

Reinforced Concrete Design

- Stress distribution in bending

\[
\beta_c = \frac{0.85f'_c}{a/2}
\]

actual stress

Whitney stress block

Wang & Salmon, Chapter 3
Force Equations

- \(C = 0.85 f'_c ba \)
- \(T = A_s f_y \)
- where
 - \(f'_c \) = concrete compressive strength
 - \(a \) = height of stress block
 - \(\beta_1 \) = factor based on \(f'_c \)
 - \(c \) = location to the n.a.
 - \(b \) = width of stress block
 - \(f_y \) = steel yield strength
 - \(A_s \) = area of steel reinforcement

Equilibrium

- \(T = C \)
- \(M_n = T(d-a/2) \)
 - \(d \) = depth to the steel n.a.
- with \(A_s \)
 - \(a = \frac{A_s f_y}{0.85 f'_c b} \)
 - \(\phi = 0.65 + (\varepsilon_{s} - \varepsilon_{c}) \frac{0.25}{(0.005 - \varepsilon_{c})} \geq 0.65 \)
 - \(M_u \leq \phi M_n \)
 - \(\phi M_n = \phi T(d-a/2) = A_s f_y (d-a/2) \)

Over and Under-reinforcement

- over-reinforced
 - steel won't yield
- under-reinforced
 - steel will yield
- reinforcement ratio
 - \(\rho = \frac{A_s}{bd} \)
 - use as a design estimate to find \(A_s,b,d \)
 - max \(\rho \) is found with \(\varepsilon_{\text{steel}} \geq 0.004 \) (not \(\rho_{\text{bal}} \))
 - *with \(\varepsilon_{\text{steel}} \geq 0.005, \phi = 0.9 \)

\[\text{http://people.bath.ac.uk/abstji/concrete_video/virtual_lab.htm} \]

\(A_s \) for a Given Section

- several methods
 - guess \(a \) and iterate
 1. guess \(a \) (less than n.a.)
 2. \(A_s = \frac{0.85 f'_c ba}{f_y} \)
 3. solve for \(a \) from \(M_u = \phi A_s f_y (d-a/2) \)
 \[a = 2 \left(d - \frac{M_u}{\phi A_s f_y} \right) \]
 4. repeat from 2. until \(a \) from 3. matches \(a \) in 2.
A_s for a Given Section (cont)

- **chart method**
 - Wang & Salmon Fig. 3.8.1 \(R_n \) vs. \(\rho \)
 1. calculate \(R_n = \frac{M_n}{bd^2} \)
 2. find curve for \(f_c' \) and \(f_y \) to get \(\rho \)
 3. calculate \(A_s \) and \(a \)
- **simplify by setting** \(h = 1.1d \)

Reinforcement

- **min for crack control**
- **required**
 \[A_s = \frac{3 \sqrt{f_c'}}{f_y} (bd) \]
- **not less than**
 \[A_s = \frac{200}{f_y} (bd) \]
- **A_{s-max}**
 \[a = \beta_1 (0.375d) \]
- **typical cover**
 - 1.5 in, 3 in with soil
- **bar spacing**

Shells

Annunciation Greek Orthodox Church

- **Wright, 1956**
Annunciation Greek Orthodox Church
• Wright, 1956

Cylindrical Shells
• can resist tension
• shape adds “depth”
• not vaults
• barrel shells

Kimball Museum, Kahn 1972
• outer shell edges
Kimball Museum, Kahn 1972

- skylights at peak

Approximate Depths