Concrete Beam Design

- composite of concrete and steel
- American Concrete Institute (ACI)
 - design for maximum stresses
 - limit state design
 - service loads x load factors
 - concrete holds no tension
 - failure criteria is yield of reinforcement
 - failure capacity x reduction factor
 - factored loads < reduced capacity
 - concrete strength = f'_c

Concrete Construction

- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Concrete Beams

- types
 - reinforced
 - precast
 - prestressed
- shapes
 - rectangular, I
 - T, double T's, bulb T's
 - box
 - spandrel
Concrete Beams

• shear
 – vertical
 – horizontal
 – combination:
 • tensile stresses at 45°

• bearing
 – crushing

Concrete

• hydration
 – chemical reaction
 – workability
 – water to cement ratio
 – mix design

• fire resistant
• cover for steel
• creep & shrinkage

Concrete

• low strength to weight ratio
• relatively inexpensive
 – Portland cement
 • types I - V
 – aggregate
 • course & fine
 – water
 – admixtures
 • air entraining
 • superplasticizers

Concrete

• placement (not pouring!)
• vibrating
• screeding
• floating
• troweling
• curing
• finishing
Reinforcement

- deformed steel bars (rebar)
 - Grade 40, $F_y = 40$ ksi
 - Grade 60, $F_y = 60$ ksi - most common
 - Grade 75, $F_y = 75$ ksi
 - US customary in # of 1/8” ϕ

- longitudinally placed
 - bottom
 - top for compression reinforcement

Composite Beams

- concrete
 - in compression
- steel
 - in tension
- shear studs

Reinforcement

- prestressing strand
- post-tensioning
- stirrups
- detailing
 - development length
 - anchorage
 - splices

Behavior of Composite Members

- plane sections remain plane
- stress distribution changes

$$f_1 = E_1 \varepsilon = \frac{- E_1 y}{R}$$
$$f_2 = E_2 \varepsilon = \frac{- E_2 y}{R}$$

http://nisee.berkeley.edu/godden
Transformation of Material

- \(n = \frac{E_2}{E_1} \) is the ratio of E's
- effectively widens a material to get same stress distribution

Stresses in Composite Section

- with a section transformed to one material, new I
 - stresses in that material are determined as usual
 - stresses in the other material need to be adjusted by \(n \)

\[
E_n = \frac{E_{\text{steel}}}{E_{\text{concrete}}}
\]

Reinforced Concrete - stress/strain

- for stress calculations
 - steel is transformed to concrete
 - concrete is in compression above n.a. and represented by an equivalent stress block
 - concrete takes no tension
 - steel takes tension
 - force ductile failure
Location of n.a.
• ignore concrete below n.a.
• transform steel
• same area moments, solve for x

$$b x \cdot \frac{x}{2} - nA_s (d - x) = 0$$

T sections
• n.a. equation is different if n.a. below flange

$$b_r h_r \left(x - \frac{h_r}{2} \right) + (x - h_r) b_w \left(\frac{x - h_r}{2} \right) - nA_s (d - x) = 0$$

ACI Load Combinations*
• $1.4D$
• $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
• $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (1.0L \text{ or } 0.5W)$
• $1.2D + 1.0W + 1.0L + 0.5(L_r \text{ or } S \text{ or } R)$
• $1.2D + 1.0E + 1.0L + 0.2S$
• $0.9D + 1.0W$
• $0.9D + 1.0E$

*can also use old ACI factors

Reinforced Concrete Design
• stress distribution in bending

Wang & Salmon, Chapter 3
Force Equations

- \(C = 0.85 f'_c ba \)
- \(T = A_s f_y \)
- where
 - \(f'_c \) = concrete compressive strength
 - \(a \) = height of stress block
 - \(\beta_i \) = factor based on \(f'_c \)
 - \(c \) = location to the n.a.
 - \(b \) = width of stress block
 - \(f_y \) = steel yield strength
 - \(A_s \) = area of steel reinforcement

Equilibrium

- \(T = C \)
- \(M_n = T(d-a/2) \)
 - \(d \) = depth to the steel n.a.
- with \(A_s \)
 - \(a = \frac{A_s f_y}{0.85 f'_c b} \)
 - \(\phi = 0.65 + (\varepsilon_u - \varepsilon_y) \frac{0.25}{(0.005 - \varepsilon_y)} \geq 0.65 \)
 - \(M_u \leq \phi M_n \)
 - \(\phi M_n = \phi T(d-a/2) = A_s f_y (d-a/2) \)

Over and Under-reinforcement

- over-reinforced
 - steel won’t yield
- under-reinforced
 - steel will yield
- reinforcement ratio
 - \(\rho = \frac{A_s}{bd} \)
 - use as a design estimate to find \(A_s, b, d \)
 - max \(\rho \) is found with \(\varepsilon_{steel} \geq 0.004 \) (not \(\rho_{bal} \))
 - *with \(\varepsilon_{steel} \geq 0.005, \phi = 0.9 \)

\[A_s \] for a Given Section

- several methods
 - guess \(a \) and iterate
 1. guess \(a \) (less than n.a.)
 2. \(a = \frac{A_s f_y}{0.85 f'_c b} \)
 3. solve for \(a \) from \(M_u = A_s f_y (d-a/2) \)
 \[a = 2 \left(d - \frac{M_u}{\phi A_s f_y} \right) \]
 4. repeat from 2. until \(a \) from 3. matches \(a \) in 2.
A_s for a Given Section (cont)

- **chart method**
 - Wang & Salmon Fig. 3.8.1 \(R_n \) vs. \(\rho \)
 1. calculate \(R_n = \frac{M_n}{bd^2} \)
 2. find curve for \(f'c \) and \(f_y \) to get \(\rho \)
 3. calculate \(A_s \) and \(a \)
- **simplify by setting** \(h = 1.1d \)

Reinforcement

- **min for crack control**
- **required**
 \[
 A_s = \frac{3\sqrt{f'c}}{f_y} (bd)
 \]
- **not less than**
 \[
 A_s = \frac{200}{f_y} (bd)
 \]
- **A_s-max** : \(a = \beta_i (0.375d) \)
- **typical cover**
 - 1.5 in, 3 in with soil
- **bar spacing**

Shells

Annunciation Greek Orthodox Church

- **Wright, 1956**
Annunciation Greek Orthodox Church

- Wright, 1956

Cylindrical Shells

- can resist tension
- shape adds “depth”

Kimball Museum, Kahn 1972

- outer shell edges
Kimball Museum, Kahn 1972

- skylights at peak

Approximate Depths

<table>
<thead>
<tr>
<th>Beams (placed in plant)</th>
<th>Typical span length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Beam</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Steel Beam</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Timber Beam</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Two-way beam</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Multiplane</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Flat plate</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Panel end</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Panel start</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Panel web</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Flange</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Tensile</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Typical span length</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Minimum span</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Possible span range</td>
<td>L30-L40</td>
</tr>
<tr>
<td>Supporting member</td>
<td>L30-L40</td>
</tr>
</tbody>
</table>

Key:
- Concrete Beam
- Steel Beam
- Timber Beam
- Two-way beam
- Multiplane
- Flat plate
- Panel end
- Panel start
- Panel web
- Flange
- Tensile
- Typical span
- Minimum span
- Possible span range
- Supporting member