concrete construction:
T-beams & slabs

T sections
- two areas of compression in moment possible
- one-way joists
- effective flange width

Systems
- beams separate from slab
- beams integral with slab
 - close spaced
- continuous beams
- no beams

T sections
- negative bending: min A_s, larger of:
 $A_s = \frac{6\sqrt{f_c}}{f_y} (b_w d) \quad A_s = \frac{3\sqrt{f_c}}{f_y} (b_f d)$
- effective width (interior)
 - $L/4$
 - $b_w + 16t$
 - center-to-center of beams
T sections

- usual analysis steps
- 1. assume no compression in web
- 2. design like a rectangular beam
- 3. needs reinforcement in slab too
- 4. also analyze for negative moment, if any

One-Way

- Joists
 - wide pans
 - 5’, 6’ up
 - light loads & long spans
 - one-leg stirrups

- Compression Reinforcement
 - doubly reinforced
 - negative bending
 - two compression forces
 - bigger M_n
 - control deflection
 - increase ductility
 - needs ties because of buckling
Compression Reinforcement

- **analysis**
 - \(A_s \) & \(A_s' \)
 - \(T = C_c + C_s \)
 - \(T = A_s f_y \)
 - \(C_s = A_s' (f'_{s} - 0.85f''_{c}) \)
 - \(C_c = 0.85f''_{c} ba \) with \(a = \beta_1 c \)
 - \(f_s' \) not known, so solve for \(c \) (n.a.)
 - \(f_s' \) < \(f_y \)?
 - \(M_n = T(d-a/2)+C_s(d-d') \)

Slabs

- **one way behavior – like beams**
- **two way behavior – more complex**

Slab Design

- **one unit wide “strip”**
- **with uniform loads**
 - like “wide” beams
 - moment / unit width
 - uniform curvature
- **with point loads**
 - resisted by stiffness of adjacent strips
 - more curvature in middle

Slab Design

- **min thickness by code**
- **reinforcement**
 - bars, welded wire mesh
 - cover
 - minimum by steel grade
 - 40-50:
 \[\rho = \frac{A_s}{bt} = 0.002 \]
 - 60:
 \[\rho = \frac{A_s}{bt} = 0.0018 \]
One-Way Slabs

- A_s tables
- max spacing
 - $\leq 3(t)$ and 18”
 - $\leq 5(t)$ and 18” – temp & shrinkage steel
- no room for stirrups

<table>
<thead>
<tr>
<th>f_{bc}</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_s</td>
<td>0.07</td>
<td>0.09</td>
<td>0.11</td>
<td>0.13</td>
<td>0.15</td>
<td>0.17</td>
<td>0.19</td>
<td>0.21</td>
<td>0.23</td>
<td>0.25</td>
<td>0.27</td>
<td>0.29</td>
</tr>
<tr>
<td>d</td>
<td>0.95</td>
<td>0.93</td>
<td>0.85</td>
<td>0.78</td>
<td>0.72</td>
<td>0.65</td>
<td>0.58</td>
<td>0.52</td>
<td>0.47</td>
<td>0.42</td>
<td>0.37</td>
<td>0.33</td>
</tr>
<tr>
<td>h</td>
<td>0.88</td>
<td>0.75</td>
<td>0.68</td>
<td>0.61</td>
<td>0.54</td>
<td>0.48</td>
<td>0.42</td>
<td>0.37</td>
<td>0.32</td>
<td>0.27</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>w</td>
<td>1.20</td>
<td>1.05</td>
<td>0.89</td>
<td>0.74</td>
<td>0.59</td>
<td>0.45</td>
<td>0.32</td>
<td>0.21</td>
<td>0.11</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>f_{pe}</td>
<td>1.58</td>
<td>1.45</td>
<td>1.35</td>
<td>1.25</td>
<td>1.15</td>
<td>1.05</td>
<td>0.95</td>
<td>0.85</td>
<td>0.75</td>
<td>0.65</td>
<td>0.55</td>
<td>0.45</td>
</tr>
<tr>
<td>f_{pt}</td>
<td>2.00</td>
<td>1.71</td>
<td>1.50</td>
<td>1.30</td>
<td>1.15</td>
<td>1.00</td>
<td>0.90</td>
<td>0.80</td>
<td>0.70</td>
<td>0.60</td>
<td>0.50</td>
<td>0.40</td>
</tr>
<tr>
<td>f_{ps}</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Precast

- prestressed
 - PCI Design Handbook
 - double T’s
 - hollow core
 - L’s
- topping
- load tables