concrete construction: T-beams & slabs

T sections
- two areas of compression in moment possible
- one-way joists
- effective flange width

Systems
- beams separate from slab
- beams integral with slab
 - close spaced
- continuous beams
- no beams

T sections
- negative bending: \(A_s \geq \frac{6\sqrt{f_c'}}{f_y} (b_w d) \)
 \(A_s = \frac{3\sqrt{f_c'}}{f_y} (b_f d) \)
- effective width (interior)
 - \(\frac{L}{4} \)
 - \(b_w + 16t \)
 - center-to-center of beams

![Diagram of T-beams and slabs](image_url)
Concrete Slabs

Lecture 23

Foundations Structures

ARCH 331

F2008abn

T sections

- **usual analysis steps**
 1. assume no compression in web
 2. design like a rectangular beam
 3. needs reinforcement in slab too
 4. also analyze for negative moment, if any

\[
a = \beta_1 c \\
0.85f'c
\]

One-Way

- **Joists**
 - wide pans
 - 5’, 6’ up
 - light loads & long spans
 - one-leg stirrups

Compression Reinforcement

- doubly reinforced
- negative bending
- two compression forces
- bigger \(M_n \)
- control deflection
- increase ductility
- needs ties because of buckling

One-Way

- **Joists**
 - standard stems
 - 2.5” to 4.5” slab
 - ~30” widths
 - reusable forms

Concrete Slabs

Lecture 23

Foundations Structures

ARCH 331

F2008abn

One-Way

- **Joists**
 - standard stems
 - 2.5” to 4.5” slab
 - ~30” widths
 - reusable forms

Concrete Slabs

Lecture 23

Foundations Structures

ARCH 331

F2008abn

One-Way

- **Joists**
 - standard stems
 - 2.5” to 4.5” slab
 - ~30” widths
 - reusable forms

Concrete Slabs

Lecture 23

Foundations Structures

ARCH 331

F2008abn
Compression Reinforcement

• analysis
 – \(A_s \) & \(A_s' \)
 – \(T = C_c + C_s \)
 – \(T = A_s f_y \)
 – \(C_s = A_s' (f'_s - 0.85 f''_c) \)
 – \(C_c = 0.85 f'_c b a \) with \(a = \beta 1 c \)
 – \(f_s' \) not known, so solve for \(c \) (n.a.)
 – \(f_s' < f_y \) ?
 – \(M_n = T(d-a/2) + C_s(d-d') \)

Slabs

• one way behavior – like beams
• two way behavior – more complex

Slab Design

• one unit wide “strip”
• with uniform loads
 – like “wide” beams
 – moment / unit width
 – uniform curvature
• with point loads
 – resisted by stiffness of adjacent strips
 – more curvature in middle

Slab Design

• min thickness by code
• reinforcement
 – bars, welded wire mesh
 – cover
 – minimum by steel grade
 • 40-50:
 \[\rho = \frac{A_s}{bt} = 0.002 \]
 • 60:
 \[\rho = \frac{A_s}{bt} = 0.0018 \]
One-Way Slabs

- A_s tables
- max spacing
 - $\leq 3(t)$ and 18”
 - $\leq 5(t)$ and 18” – temp & shrinkage steel
- no room for stirrups

![Diagram of One-Way Slabs]

<table>
<thead>
<tr>
<th>Bar size (in.)</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.22</td>
<td>0.19</td>
<td>0.17</td>
<td>0.15</td>
<td>0.13</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>10</td>
<td>0.24</td>
<td>0.22</td>
<td>0.20</td>
<td>0.18</td>
<td>0.16</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>11</td>
<td>0.26</td>
<td>0.25</td>
<td>0.23</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>12</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>13</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>14</td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>15</td>
<td>0.34</td>
<td>0.33</td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>16</td>
<td>0.36</td>
<td>0.35</td>
<td>0.34</td>
<td>0.33</td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
</tr>
<tr>
<td>17</td>
<td>0.38</td>
<td>0.37</td>
<td>0.36</td>
<td>0.35</td>
<td>0.34</td>
<td>0.33</td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
</tr>
<tr>
<td>18</td>
<td>0.40</td>
<td>0.39</td>
<td>0.38</td>
<td>0.37</td>
<td>0.36</td>
<td>0.35</td>
<td>0.34</td>
<td>0.33</td>
<td>0.32</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Precast

- prestressed
 - PCI Design Handbook
 - double T’s
 - hollow core
 - L’s
- topping
- load tables

![Diagram of Precast Slabs]

<table>
<thead>
<tr>
<th>Load (psi)</th>
<th>Span (ft)</th>
<th>2 in. Normal Weight Topping</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8</td>
<td>0.50</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>0.60</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>0.70</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>0.80</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>0.90</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>1.00</td>
</tr>
<tr>
<td>45</td>
<td>8</td>
<td>1.10</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>1.20</td>
</tr>
<tr>
<td>55</td>
<td>8</td>
<td>1.30</td>
</tr>
<tr>
<td>60</td>
<td>8</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Concrete Slabs 14
Lecture 23
Foundations Structures
ARCH 331
F2008abn