Shear in Concrete Beams

- flexure combines with shear to form diagonal cracks
- horizontal reinforcement doesn’t help
- stirrups = vertical reinforcement

ACI Shear Values

- shear stress (beams)
 - \(\sigma_v = \frac{2}{\phi} \sqrt{f'_c} \quad f'_c \text{ is in psi} \)
 - \(\lambda \) for lightweight mat’ls
- shear strength:
 - \(V_u \leq \phi V_c + \phi V_s \)
 - \(V_s \) is strength from stirrup reinforcement
Concrete Shear 5
Lecture 24
Foundations Structures
ARCH 331
F2008abn
Stirrup Reinforcement
• shear capacity:
\[V_s = \frac{A_v f_y d}{s} \]
– \(A_v \) = area in all legs of stirrups
– \(s \) = spacing of stirrups
• may need stirrups when concrete has enough strength!

Required Stirrup Reinforcement
• spacing limits

Torsional Stress & Strain
• can see torsional stresses & twisting of axi-symmetrical cross sections
– torque
– remain plane
– undistorted
– rotates
• not true for square sections....

Shear Stress Distribution
• depend on the deformation
• \(\phi \) = angle of twist
– measure
• can prove planar section doesn’t distort
Shearing Strain

• related to ϕ
 \[\gamma = \frac{\rho \phi}{L} \]

• ρ is the radial distance from the centroid to the point under strain

• shear strain varies linearly along the radius: γ_{max} is at outer diameter

Torsional Stress - Strain

• know $f_v = \tau = G \cdot \gamma$ and $\gamma = \frac{\rho \phi}{L}$

• so
 \[\tau = G \cdot \frac{\rho \phi}{L} \]

• where G is the Shear Modulus

Shear Stress

• τ_{max} happens at outer diameter

• combined shear and axial stresses
 – maximum shear stress at 45° “twisted” plane
Shear Strain

• knowing $\tau = G \cdot \frac{\rho \phi}{L}$ and $\tau = \frac{T \rho}{J}$

• solve: $\phi = \frac{TL}{JG}$

• composite shafts: $\phi = \sum_i \frac{T_i L_i}{J_i G_i}$

Noncircular Shapes

• torsion depends on J

• plane sections don’t remain plane

• τ_{max} is still at outer diameter

• where a is longer side ($> b$)

Open Thin-Walled Sections

• with very large a/b ratios:

\[
\tau_{\text{max}} = \frac{T}{\frac{1}{3} ab^2} \quad \phi = \frac{TL}{\frac{1}{3} ab^3 G}
\]

Shear Flow in Closed Sections

• q is the internal shear force/unit length

\[
\tau = \frac{T}{2tA} \quad \phi = \frac{TL}{\frac{4}{3} tA^2} \sum_i \frac{s_i}{t_i}
\]

• A is the area bounded by the centerline

• s_i is the length segment, t_i is the thickness

TABLE 3.1. Coefficients for Rectangular Bars in Torsion

<table>
<thead>
<tr>
<th>a/b</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.206</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.2790</td>
</tr>
<tr>
<td>2.5</td>
<td>0.256</td>
<td>0.3490</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.2630</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.2810</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.2910</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.3120</td>
</tr>
<tr>
<td>∞</td>
<td>0.333</td>
<td>0.3330</td>
</tr>
</tbody>
</table>
Shear Flow in Open Sections

- each segment has proportion of T with respect to torsional rigidity,

$$\tau_{\text{max}} = \frac{T t_{\text{max}}}{\frac{1}{3} \sum b_i t_i^3}$$

- total angle of twist:

$$\phi = \frac{TL}{\frac{1}{3} G \sum b_i t_i^3}$$

- I beams - web is thicker, so τ_{max} is in web

Torsional Shear Stress

- twisting moment
- and beam shear

Torsional Shear Reinforcement

- closed stirrups
- more longitudinal reinforcement
- area enclosed by shear flow

Development Lengths

- required to allow steel to yield (f_y)
- standard hooks
 - moment at beam end
- splices
 - lapped
 - mechanical connectors
Development Lengths

- \(l_d \), embedment required both sides
- proper cover, spacing:
 - No. 6 or smaller
 \[l_d = \frac{d_b f_y}{25 \lambda \sqrt{f_c'}} \] or 12 in. minimum
 - No. 7 or larger
 \[l_d = \frac{d_b f_y}{20 \lambda \sqrt{f_c'}} \] or 12 in. minimum

Development Lengths

- hooks
 - bend and extension
 - \(l_{dh} = \frac{d_b f_y}{50 \lambda \sqrt{f_c'}} \)

Concrete Deflections

- bars in compression
 \[l_d = \frac{d_b f_y}{50 \lambda \sqrt{f_c'}} \leq 0.0003 f_y d_b \]
- splices
 - tension minimum is function of \(l_d \) and splice classification
 - compression minimum
 - is function of \(d_b \) and \(F_y \)
- elastic range
 - \(E_c \) (with \(f_c' \) in psi)
 - normal weight concrete (~ 145 lb/ft\(^3\))
 \[E_c = 57,000 \sqrt{f_c'} \]
 - concrete between 90 and 160 lb/ft\(^3\)
 \[E_c = W_c^{1.5} 33 \sqrt{f_c'} \]
 - cracked
 - I cracked
 - \(E \) adjusted
Deflection Limits

- relate to whether or not beam supports or is attached to a damageable non-structural element
- need to check service live load and long term deflection against these

<table>
<thead>
<tr>
<th>Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/180</td>
<td>roof systems (typical) – live</td>
</tr>
<tr>
<td>L/240</td>
<td>floor systems (typical) – live + long term</td>
</tr>
<tr>
<td>L/360</td>
<td>supporting plaster – live</td>
</tr>
<tr>
<td>L/480</td>
<td>supporting masonry – live + long term</td>
</tr>
</tbody>
</table>