concrete construction: flat spanning systems

Reinforced Concrete Design

- flat plate
 - 5”-10” thick
 - simple formwork
 - lower story heights

- flat slab
 - same as plate
 - 2 1/4”–8” drop panels

Reinforced Concrete Design

- beam supported
 - slab depth ~ L/20
 - 8”–60” deep

- one-way joists
 - 3”–5” slab
 - 8”–20” stems
 - 5”-7” webs
Reinforced Concrete Design

- **two-way joist**
 - “waffle slab”
 - 3”-5” slab
 - 8”-24” stems
 - 6”-8” webs

- **beam supported slab**
 - 5”-10” slabs
 - taller story heights

Reinforced Concrete Design

- **simplified frame analysis**
 - strips, like continuous beams

- **moments require flexural reinforcement**
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Reinforced Concrete Design

- **one-way slabs (wide beam design)**
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - w_u from combos
 - uniform loads with $L/D \leq 3$
 - ℓ_n is clear span (+M) or average of adjacent clear spans (-M)
Reinforced Concrete Design

- two-way slabs - Direct Design Method
 - 3 or more spans each way
 - uniform loads with L/D ≤ 2
 - rectangular panels with long/short span ≤ 2
 - successive spans can’t differ > longer/3
 - column offset no more than 10% span

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

Reinforced Concrete Design

<table>
<thead>
<tr>
<th>Table 4-6 Two-Way Beam-Supported Slab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span</td>
</tr>
<tr>
<td>Total Moment</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
</tbody>
</table>

Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel
Shear in Concrete
• at columns with waffle slabs

Openings in Slabs
• careful placement of holes
• shear strength reduced
• bending & deflection can increase

General Beam Design
• f'_c & f_y needed
• usually size just b & h
 – even inches typical (forms)
 – similar joist to beam depth
 – $b:h$ of 1:1.5-1:2.5
 – b_w & b_r for T
 – to fit reinforcement + stirrups
• slab design, t
 – deflection control & shear

General Beam Design (cont’d)
• custom design:
 – longitudinal steel
 – shear reinforcement
 – detailing
Space “Frame” Behavior

- handle uniformly distributed loads well
- bending moment
 - tension & compression “couple” with depth
 - member sizes can vary, but difficult

Shear at columns
- support conditions still important
 - point supports not optimal
- fabrication/construction can dominate design

Folded Plates

- increased bending stiffness with folding
- lateral buckling avoided

Folded Plates

- common for roofs
- edges need stiffening
Folded Plates

- State Farm Center
 (Assembly Hall), University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound
 with 614 miles of one-fifth inch steel wire