Concrete construction: flat spanning systems

Reinforced Concrete Design

- flat plate
 - 5”–10” thick
 - simple formwork
 - lower story heights

- flat slab
 - same as plate
 - 2 ¼”–8” drop panels

Reinforced Concrete Design

- economical & common
- resist lateral loads

- beam supported
 - slab depth ~ L/20
 - 8”–60” deep

- one-way joists
 - 3”–5” slab
 - 8”–20” stems
 - 5”–7” webs
Reinforced Concrete Design

- two-way joist
 - “waffle slab”
 - 3”-5” slab
 - 8”-24” stems
 - 6”-8” webs
- beam supported slab
 - 5”-10” slabs
 - taller story heights

Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - w_u from combos
 - uniform loads with $L/D \leq 3$
 - ℓ_n is clear span (+M) or average of adjacent clear spans (-M)
Reinforced Concrete Design

- two-way slabs - Direct Design Method
 - 3 or more spans each way
 - uniform loads with L/D ≤ 2
 - rectangular panels with long/short span ≤ 2
 - successive spans can’t differ > longer/3
 - column offset no more than 10% span

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

Table 4-6 Two-Way Beam-Supported Slab

<table>
<thead>
<tr>
<th>Span</th>
<th>Slab Moments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Moment</td>
<td>1 Exterior Negative</td>
<td>2 Positive</td>
<td>3 First Interior Negative</td>
<td>4 Positive</td>
</tr>
<tr>
<td>0.0</td>
<td>Column Strip Beam Slab</td>
<td>5.13 M<sub>B</sub></td>
<td>-0.57 M<sub>B</sub></td>
<td>0.67 M<sub>B</sub></td>
<td>-0.35 M<sub>B</sub></td>
</tr>
<tr>
<td></td>
<td>Beam Strip</td>
<td>0.00 M<sub>B</sub></td>
<td>0.00 M<sub>B</sub></td>
<td>0.00 M<sub>B</sub></td>
<td>0.00 M<sub>B</sub></td>
</tr>
<tr>
<td>1.0</td>
<td>Column Strip Beam Slab</td>
<td>5.36 M<sub>B</sub></td>
<td>-0.37 M<sub>B</sub></td>
<td>0.48 M<sub>B</sub></td>
<td>-0.25 M<sub>B</sub></td>
</tr>
<tr>
<td></td>
<td>Beam Strip</td>
<td>0.00 M<sub>B</sub></td>
<td>0.00 M<sub>B</sub></td>
<td>0.00 M<sub>B</sub></td>
<td>0.00 M<sub>B</sub></td>
</tr>
<tr>
<td>2.0</td>
<td>Column Strip Beam Slab</td>
<td>5.60 M<sub>B</sub></td>
<td>-0.30 M<sub>B</sub></td>
<td>0.51 M<sub>B</sub></td>
<td>-0.25 M<sub>B</sub></td>
</tr>
<tr>
<td></td>
<td>Beam Strip</td>
<td>0.00 M<sub>B</sub></td>
<td>0.00 M<sub>B</sub></td>
<td>0.00 M<sub>B</sub></td>
<td>0.00 M<sub>B</sub></td>
</tr>
</tbody>
</table>

Notes:
1. Beams and slab satisfy stiffness criteria: α_BG ≥ 1.0 and β_B ≥ 2.0.
2. Interpolate between values shown for different γ_B; reduce.
3. All negative moments are at face of support.
4. Concentrated loads applied directly to beams must be accounted for separately.

Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel
Shear in Concrete

- at columns with waffle slabs

Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase

General Beam Design

- f'_c & f_y needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - $b:h$ of 1:1.5-1:2.5
 - b_w & b_r for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear

General Beam Design (cont’d)

- custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing

\[S = \frac{bh^2}{6} \]
Space “Frame” Behavior

- handle uniformly distributed loads well
- bending moment
 - tension & compression “couple” with depth
 - member sizes can vary, but difficult

Folded Plates

- increased bending stiffness with folding
- lateral buckling avoided

Space “Frame” Behavior

- shear at columns
- support conditions still important
 - point supports not optimal
- fabrication/construction can dominate design

Folded Plates

- common for roofs
- edges need stiffening

http://nisee.berkeley.edu/godden
Folded Plates

– State Farm Center
 (Assembly Hall), University of Illinois
– Harrison & Abramovitz 1963
– Edge-supported dome spanning 400 feet wound
 with 614 miles of one-fifth inch steel wire

www.library.illinois.edu