Concrete in Compression

- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear
- f_c'

Slenderness

- effective length in monolithic with respect to stiffness of joint: Ψ & k
- not slender when
 \[
 \frac{kL_u}{r} \leq 22
 \]
 not braced

Columns Reinforcement

- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (4 bars minimum)
Effective Length (revisited)

- relative rotation

\[\Psi = \frac{\sum EI}{\sum EI} \]

Column Design

- \(\phi_c = 0.65 \) for ties, \(\phi_c = 0.70 \) for spirals
- \(P_o \) – no bending
 \[P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st} \]
- \(P_u \leq \phi_c P_n \)
 - ties: \(P_n = 0.8 P_o \)
 - spiral: \(P_n = 0.85 P_o \)
- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection
 \((P-\Delta) \)
Columns with Bending

- for ultimate strength behavior, ultimate strains can't be exceeded
 - concrete \(\varepsilon_{u,\text{concrete}} = 0.003 \)
 - steel \(\varepsilon_{u,\text{steel}} = \frac{f_y}{E_y} \)

- \(P \) reduces with \(M \)

Design Methods

- calculation intensive
 - handbook charts
 - computer programs

Design Considerations

- bending at both ends
 - \(P - \Delta \) maximum
- biaxial bending
- walls
 - unit wide columns
 - “deep” beam shear
- detailing
 - shorter development lengths
 - dowels to footings

Columns with Bending

- need to consider combined stresses
- linear strain
- steel stress at or below \(f_y \)
- plot interaction diagram