Foundation

- the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Structural vs. Foundation Design

- structural design
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.

Structural vs. Foundation Design

- foundation design
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, q_u
- allowable bearing capacity, $q_a = \frac{q_u}{S.F.}$

Soil Properties & Mechanics

- strength, q_a

Bearing Failure

- shear

Table 1804.3

Presumptive Loadbearing Values of Foundation Materials

<table>
<thead>
<tr>
<th>Class of material</th>
<th>Loadbearing pressure (lb/sq ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Domestic gravel</td>
<td>15,000</td>
</tr>
<tr>
<td>2. Domestic sand</td>
<td>12,000</td>
</tr>
<tr>
<td>3. Domestic clay</td>
<td>9,000</td>
</tr>
<tr>
<td>4. Domestic gravel and clay</td>
<td>7,000</td>
</tr>
<tr>
<td>5. Domestic gravel and clay</td>
<td>5,000</td>
</tr>
<tr>
<td>6. Domestic gravel and clay</td>
<td>3,000</td>
</tr>
<tr>
<td>7. Domestic gravel and clay</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Table 1804.3: Presumptive loadbearing values of various soils, as given in the IBCA National Building Code/1996. (Reproduced by permission)
Lateral Earth Pressure

- passive vs. active

![Diagram showing active and passive earth pressures](image)

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length

- other materials (piles)
 - steel
 - wood
 - composite

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand

Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

 - linear stress distribution assumed

- mat foundations
- retaining walls
- basement walls
- pile foundations
- drilled piers
Proportioning Footings

- net allowable soil pressure, \(q_{\text{net}} \)
 \[q_{\text{net}} = q_{\text{allowable}} - h_f (\gamma_c - \gamma_s) \]
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden

- design requirement with total unfactored load:
 \[\frac{P}{A} \leq q_{\text{net}} \]

Concrete Spread Footings

- failure modes
 - shear
 - bending

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- \(P_u = \) combination of factored \(D, L, W \)
- ultimate strength
 - \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 - plain concrete has shear strength
 - \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure

Concrete Spread Footings

- shear failure
 - one way shear
 - two way shear
Over and Under-reinforcement

• reinforcement ratio for bending
 \[\rho = \frac{A_s}{bd} \]
 – use as a design estimate to find \(A_{s, b, d} \)
 – max \(\rho \) from \(\varepsilon_{\text{steel}} \geq 0.004 \)
 – minimum for slabs & footings of uniform thickness
 \[\frac{A_s}{bh} = 0.002 \quad \text{grade 40/50 bars} \]
 \[= 0.0018 \quad \text{grade 60 bars} \]

Reinforcement Length

• need length, \(\ell_d \)
 – bond
 – development of yield strength

Column Connection

• bearing of column on footing
 \[P_0 \leq \phi P_n = \phi (0.85 f_c' A_1) \]
 \[\phi = 0.65 \quad \text{for bearing} \]
 – confined: increase \(x \)
 \[\frac{A_{2}}{A_1} \leq 2 \]
 • dowel reinforcement
 – if \(P_u > P_b \), need compression reinforcement
 – min of 4 bars and 0.005\(A_g \)

Wall Footings

– continuous strip for load bearing walls
– plain or reinforced
– behavior
 • wide beam shear
 • bending of projection
– dimensions usually dictated by codes for residential walls
– light loads
Eccentrically Loaded Footings

- footings subject to moments

\[
P \quad \text{by statics:} \quad M = P e
\]

- soil pressure resultant force may not coincide with the centroid of the footing

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing

- for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Kern Limit

- boundary of e for no tensile stress

- triangular stress block with \(p_{\text{max}} \)

\[
\text{volume} = \frac{wp_x}{2} = N
\]

\[
p_{\text{max}} = \frac{2N}{wx}
\]

Guidelines

- want resultant of load from pressure inside the middle third of base (kern)
 - ensures stability with respect to overturning

\[
SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5
\]

- pressure under toe (maximum) \(\leq q_a \)

- shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings
- supports two columns
- used when space is tight and spread footings would overlap or when at property line
- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types
- rectangular
- trapezoid
- strap or cantilever
 - prevents overturning of exterior column
- raft/mat
 - more than two columns over an extended area

Proportioning
- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[q_{\text{max}} \leq q_a \]

Retaining Walls
- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key

\[R = P_1 + P_2 \]
Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 - (adequate drainage)

Retaining Walls

- procedure
 - proportion and check stability with working loads for bearing, overturning and sliding
 - design structure with factored loads

\[
SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2
\]

\[
SF = \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2
\]

Retaining Wall Proportioning

- estimate size
 - footing size, \(B \) \(\approx \) 2/5 - 2/3 wall height (H)
 - footing thickness \(\approx \) 1/12 - 1/8 footing size (B)
 - base of stem \(\approx \) 1/10 - 1/12 wall height (H+h_f)
 - top of stem \(\geq 12" \)

Retaining Walls Forces

- design like cantilever beam
 - \(V_u \) & \(M_u \) for reinforced concrete
 - \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 - \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure
Retaining Wall Types

- **“gravity” wall**
 - usually unreinforced
 - economical & simple

- cantilever retaining wall
 - common

Deep Foundations

- usage
 - when spread footings, mats won’t work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations

Deep Foundation Types

- piles - usually driven, 6”-8” ø, 5’ +
 - piers
 - caissons
 - drilled shafts

- bored piles
 - 2.5’ - 10/12 ø

- pressure injected piles

Retaining Wall Types

- counterfort wall
 - very tall walls (> 20 - 25 ft)

- buttress wall

- bridge abutment

- basement frame wall (large basement areas)
Deep Foundation Types

- classification
 - by material
 - by shape
 - by function (structural, compaction...)

- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Deep Foundations

Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)

- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

- **end bearing pile** (point bearing)

 ![Diagram](Soft or loose layer)

 \[P_a = A_p \cdot f_a \]

 for use in soft or loose materials over a dense base

- **friction piles** (floating)

 ![Diagram](Common in both clay & sand)

 \[R_p \approx 0 \]

 taper: sand & silt

- **socketed**

Piles Classified By Function

- **combination friction and end bearing**

- **uplift/tension piles**

 structures that float, towers

- **batter piles**

 angled, cost more, resist large horizontal loads

\[1:12 \text{ to } 1:3 \text{ or } 1:4 \]

Pile Caps and Grade Beams

- **fender piles, dolphins, pile clusters**

 large # of piles in a small area

- **compaction piles**

 used to densify loose sands

- **drilled piers**

 eliminate need for pile caps

 designed for bearing capacity (not slender)

- **like multiple column footing**

- **more shear areas to consider**