Foundations

- the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Structural vs. Foundation Design

- **foundation design**
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no design the same

- **structural design**
 - choice of materials
 - choice of framing system
 - uniform materials and quality assurance
 - design largely independent of geology, climate, etc.
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, \(q_u \)
 - allowable bearing capacity, \(q_a = \frac{q_u}{S.F.} \)

Bearing Failure

- shear

Table 1804.3

<table>
<thead>
<tr>
<th>Class of material</th>
<th>Loadbearing pressure (pounds per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gravel material</td>
<td>12,000</td>
</tr>
<tr>
<td>2. Sedimentary rock</td>
<td>5,000</td>
</tr>
<tr>
<td>3. Sandy Gravel</td>
<td>3,000</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty</td>
<td>2,000</td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay & clayey silt</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Note: 1 psf = 47.9 Pa
Lateral Earth Pressure

- passive vs. active

active
(trying to move wall)

passive
(resists movement)

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length

- other materials (piles)
 - steel
 - wood
 - composite

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand

Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

- linear stress distribution assumed
Proportioning Footings

- net allowable soil pressure, \(q_{\text{net}} \)
 - \(q_{\text{net}} = q_{\text{allowable}} - h_f (\gamma_c - \gamma_s) \)
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden
- design requirement with total unfactored load:
 \[
 \frac{P}{A} \leq q_{\text{net}}
 \]

Concrete Spread Footings

- failure modes
 - shear
 - bending

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- \(P_u = \text{combination of factored } D, L, W \)
- ultimate strength
 - \(V_u \leq \phi V_c : \phi = 0.75 \text{ for shear} \)
 - plain concrete has shear strength
 - \(M_u \leq \phi M_n : \phi = 0.9 \text{ for flexure} \)
Over and Under-reinforcement

• reinforcement ratio for bending
 – \(\rho = \frac{A_s}{bd} \)
 – use as a design estimate to find \(A_s, b, d \)
 – max \(\rho \) from \(\varepsilon_{\text{steel}} \geq 0.004 \)
 – minimum for slabs & footings of uniform thickness
 \[\frac{A_s}{bh} = 0.002 \text{ grade 40/50 bars} \]
 \[= 0.0018 \text{ grade 60 bars} \]

Reinforcement Length

• need length, \(\ell_d \)
 – bond
 – development of yield strength

Column Connection

• bearing of column on footing
 – \(P_u \leq \phi P_n = \phi (0.85 f_c' A_1) \)
 \(\phi = 0.65 \) for bearing
 – confined: increase \(x \) \(\sqrt{\frac{A_2}{A_1}} \leq 2 \)
• dowel reinforcement
 – if \(P_u > P_b \), need compression reinforcement
 – min of 4 bars and 0.005\(A_g \)

Wall Footings

– continuous strip for load bearing walls
– plain or reinforced
– behavior
 • wide beam shear
 • bending of projection
– dimensions usually dictated by codes for residential walls
– light loads
Eccentrically Loaded Footings

- footings subject to moments

 ![Diagram of eccentrically loaded footing](image)

 \[M = P e \]

 - soil pressure resultant force may not coincide with the centroid of the footing

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing

 ![Diagram of differential soil pressure](image)

 - for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Kern Limit

- boundary of \(e \) for no tensile stress

 ![Diagram of kern limit](image)

- triangular stress block with \(p_{\text{max}} \)

 \[
 \text{volume} = \frac{wx}{2} = N \\
 p_{\text{max}} = \frac{2N}{wx}
 \]

Guidelines

- want resultant of load from pressure inside the middle third of base (kern)

 - ensures stability with respect to overturning

 \[
 SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5
 \]

 - pressure under toe (maximum) \(\leq q_{\text{a}} \)

 - shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line
- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types

- rectangular
- trapezoid
- strap or cantilever
 - prevents overturning of exterior column
- raft/mat
 - more than two columns over an extended area

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure
 assuming a rigid footing

\[q_{max} \leq q_a \]

\[R = P_1 + P_2 \]

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key
Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 - (adequate drainage)

Retaining Wall Proportioning

- estimate size
 - footing size, $B \approx 2/5 - 2/3$ wall height (H)
 - footing thickness $\approx 1/12 - 1/8$ footing size (B)
 - base of stem $\approx 1/10 - 1/12$ wall height ($H+h_f$)
 - top of stem $\geq 12''$

Retaining Walls Forces

- design like cantilever beam
 - V_u & M_u for reinforced concrete
 - $V_u \leq \phi V_c : \phi = 0.75$ for shear
 - $M_u \leq \phi M_n : \phi = 0.9$ for flexure

$SF = \frac{M_{resist}}{M_{overturning}} \geq 1.5 - 2$

$SF = \frac{F_{horizontal-resist}}{F_{sliding}} \geq 1.25 - 2$
Retaining Wall Types

- “gravity” wall
 - usually unreinforced
 - economical & simple

- cantilever retaining wall
 - common

Deep Foundations

- usage
 - when spread footings, mats won’t work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations

Retaining Wall Types

- counterfort wall
 { very tall walls (> 20 - 25 ft)

- buttress wall

- bridge abutment

- basement frame wall (large basement areas)

Deep Foundation Types

- piles - usually driven, 6”-8” φ, 5’ +
 - piers
 - caissons
 - drilled shafts
 - bored piles
 - pressure injected piles
 - drilled, excavated, concreted (with or without steel)

- drilled shafts
 - 2.5’ - 10’/12’ φ
Deep Foundation Types

- classification
 - by material
 - by shape
 - by function (structural, compaction...)

- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Deep Foundations

Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)

- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

- **end bearing pile (point bearing)**
 - $P_a = A_p \cdot f_a$
 - for use in soft or loose materials over a dense base
 - soft or loose layer
 - "socketed"

- **friction piles (floating)**
 - common in both clay & sand
 - tapered: sand & silt
 - $R_s = f(\text{adhesion})$
 - $R_p \approx 0$

Piles Classified By Function

- combination friction and end bearing

- uplift/tension piles
 - structures that float, towers

- batter piles
 - angled, cost more, resist large horizontal loads

1:12 to 1:3 or 1:4

Pile Caps and Grade Beams

- fender piles, dolphins, pile clusters
 - large # of piles in a small area

- compaction piles
 - used to densify loose sands

- drilled piers
 - eliminate need for pile caps
 - designed for bearing capacity (not slender)

- like multiple column footing

- more shear areas to consider