Masonry Design

- Masonry Standards Joint Committee
 - ACI, ASCE, TMS
 - ASD (+empirical)
 - linear-elastic stresses
 - LRFD added in 2002
 - referenced by IBC
 - unreinforced allows tension in flexure
 - reinforced - all tension in steel
 - walls are also in compression

Masonry Beam & Wall Design

- reinforcement increases capacity & ductility
Masonry Design

- \(f_s \) is not the yield stress
- \(f_m \) is the stress in the masonry

\[
\rho = \frac{A_s}{bd}
\]

Masonry Materials

- units
 - stone, brick, concrete block, clay tile

Masonry Materials

- mortar
 - water, masonry cement, sand, lime
 - types:
 - \(M \) higher strength – 2500 psi (ave.)
 - \(N \) medium high strength – 1800 psi
 - \(S \) medium strength – 750 psi
 - \(W \) medium low strength – 350 psi
 - \(K \) low strength – 75 psi

Masonry Materials

- rebar
- grout
 - fills voids and fixes rebar
- prisms
 - used to test strength, \(f'_m \)
- fire resistant
Masonry Materials

- moisture resistance
 - weathering index for brick
 - bond and detailing
 - expansion or shrinking from water
 - provide control joints
 - parapets, corners, long walls

Masonry Walls

- tension normal to bed joints
- tension parallel to bed joints

Allowable Masonry Stresses

- tension - unreinforced only

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Flexural Tension Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>$F_b = 1/3 f'_m$ (unreinforced)</td>
</tr>
<tr>
<td>Weak</td>
<td>$F_b = 0.45 f'_m$ (reinforced)</td>
</tr>
</tbody>
</table>

- shear, unreinforced masonry
 - $F_v = 1.5 \sqrt{f'_m} \leq 120 \text{ psi}$

- shear, reinforced masonry
 - $M/Vd \leq 0.25$: $F_v = 3.0 \sqrt{f'_m}$
 - $M/Vd \geq 1.0$: $F_v = 2.0 \sqrt{f'_m}$
Allowable Reinforcement Stress

- **tension**
 - a) Grade 40 or 50 \(F_s = 20 \text{ ksi} \)
 - b) Grade 60 \(F_s = 32 \text{ ksi} \)
 - c) Wire joint \(F_s = 30 \text{ ksi} \)

- *no allowed increase by 1/3 for combinations with wind & earthquake*
 – did before 2011 MSJC code

Reinforcement, \(M_s \)

\[
\sum F = 0: \quad A_s f_s = f_m b \frac{kd}{2}
\]

\[
\sum M \text{ about } C_m: \quad M_s = A_s f_s jd = pbd^2 jf_s
\]

if \(f_s = F_s \) (allowable) the moment capacity is limited by the steel

MSJC: \(F_s = 20 \text{ ksi}, 24 \text{ ksi or 30 ksi by type} \)

Reinforcement, \(M_m \)

\[
\sum F = 0: \quad A_s f_s = f_m b \frac{kd}{2}
\]

\[
\sum M \text{ about } T_s: \quad M_m = f_m b \frac{kd}{2} jd = 0.5 f_m bd^2 jk
\]

if \(f_s = F_s \) (allowable) the moment capacity is limited by the steel

MSJC \(F_B = 0.33 f_m \)

Masonry Lintels

- **distributed load**
 – triangular or trapezoidal

MSJC: \(F_s = 20 \text{ ksi}, 24 \text{ ksi or 30 ksi by type} \)
Strategy for RM Flexural Design

- to size section and find reinforcement
 - find ρ_b knowing f'_m and f_y
 - size section for some $\rho < \rho_b$
 - get k, j
 - size section for some $\rho < \rho_b$
 - get $b & d$ in nice units
- size reinforcement (bar size & #): $A_s = \frac{M}{F_s,jd}$
- check design: $f_b = \frac{M}{0.5bd^2j} < F_b$

Ultimate Strength Design

- LRFD
- like reinforced concrete
- useful when beam shear is high
- improved inelastic model
 - ex. earthquake loads

Masonry Columns and Pilasters

- must be reinforced

Masonry Columns and Pilasters

- considered a column when $b/t < 3$ and $h/t > 4$
 - b is width of “wall”
 - t is thickness of “wall”
- slender is
 - 8” one side
 - $h/t \leq 25$
- needs ties
- eccentricity may be required
Masonry Columns

- allowable axial load

\[
P_a = \begin{cases}
0.25f'_m A_n + 0.65A_{st} F_s & \frac{h}{r} \leq 99 \\
0.25f'_m A_n + 0.65A_{st} F_s \left(\frac{70r}{h} \right)^2 & \frac{h}{r} > 99
\end{cases}
\]

\[
h = \text{effective length} \\
r = \text{radius of gyration} \\
A_n = \text{effective area of masonry} \\
A_{st} = \text{effective area of column reinforcement} \\
F_s = \text{allowable compressive stress in column reinforcement}
\]

Masonry Walls (unreinforced)

- allowable axial stresses

\[
F_a = \begin{cases}
0.25f'_m \left[1 - \left(\frac{h}{140r} \right)^2 \right] & \frac{h}{r} \leq 99 \\
0.25f'_m \left(\frac{70r}{h} \right)^2 & \frac{h}{r} > 99
\end{cases}
\]

Design

- masonry columns and walls (unreinforced)

\[
\frac{f_a}{F_a} + \frac{f_b}{F_b} \leq 1.0 \quad \text{and} \quad f_b - f_a \leq F_t
\]

\[
\begin{align*}
&- h/r < 99 \\
&\quad F_a = 0.25f'_m \left[1 - \left(\frac{h}{140r} \right)^2 \right] \\
&- h/r > 99 \\
&\quad F_a = 0.25f'_m \left(\frac{70r}{h} \right)^2 \\
&\quad F_b = 0.33f'_m
\end{align*}
\]

Design

- masonry columns and walls - loading

- wind loading

- eccentric axial load

- “virtual” eccentricity, \(e_1 \)

\[
e_1 = \frac{M}{P}
\]

virtual eccentricity
Design

- masonry columns and walls – with rebar
 - wall reinforcement usually at center and ineffective in compression

\[
f_a + f_b \leq F_b \quad \text{provided} \quad f_a \leq F_a
\]

\[
f_a = \frac{F_m}{C_m} = \frac{f_m b (k d)}{2}
\]

\[
t = \frac{P}{A}
\]

for equilibrium: \(\sum F = P = C_m - T_s \)

Design Steps Knowing Loads

1. assume limiting stress
 - buckling, axial stress, combined stress
2. solve for \(r, A \) or \(S \)
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Final Exam Material

- my list:
 - systems
 - components & levels
 - design considerations
 - equilibrium - \(\Sigma F \) & \(\Sigma M \)
 - supports, trusses, cables, beams, pinned frames, rigid frames
 - materials
 - strain & stress \(E \), temperature, constraints

Final Exam Material

- my list (continued):
 - beams
 - distributed loads, tributary width, V&M, stresses, design, section properties \(I \) & \(S \), pitch, deflection
 - columns
 - stresses, design, section properties \(I \) & \(r \)
 - frames
 - \(P, V \) & \(M, P-\Delta \), effective length with joint stiffness, connection design, tension member design
Final Exam Material

• my list (continued):
 – foundations
 • types
 • sizing & structural design
 • overturning and sliding
 – design specifics
 • steel (ASD & LRFD)
 • concrete
 • wood
 • masonry