Masonry Design

- Masonry Standards Joint Committee
 - ACI, ASCE, TMS
 - ASD (+empirical)
 - linear-elastic stresses
 - LRFD added in 2002
 - referenced by IBC
 - unreinforced allows tension in flexure
 - reinforced - all tension in steel
 - walls are also in compression

Masonry Beam & Wall Design

- reinforcement increases capacity & ductility
Masonry Design

- f_s is not the yield stress
- f_m is the stress in the masonry

\[T_s = A_s f_s \]
\[C_m = f_m b (kd) / 2 \]
\[\rho = \frac{A_s}{bd} \]

Masonry Materials

- units
 - stone, brick, concrete block, clay tile

- mortar
 - water, masonry cement, sand, lime
 - types:
 - M higher strength – 2500 psi (ave.)
 - S medium high strength – 1800 psi
 - N medium strength – 750 psi
 - O medium low strength – 350 psi
 - K low strength – 75 psi
 - fire resistant

- rebar
- grout
 - fills voids and fixes rebar
- prisms
 - used to test strength, f'_m
Masonry Materials

- moisture resistance
 - weathering index for brick
 - bond and detailing
 - expansion or shrinking from water
- provide control joints
- parapets, corners, long walls

Masonry Walls

tension normal to bed joints

Not allowed in MSJC code

tension parallel to bed joints

strong units

weak units

Allowable Masonry Stresses

- tension - unreinforced only

<table>
<thead>
<tr>
<th>Direction of flexural stress and masonry type</th>
<th>Member type</th>
<th>Portland cement or mortar masonry</th>
<th>Masonry cement or air-entrained portland cement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M or S</td>
<td>N</td>
<td>M or S (standard)</td>
</tr>
<tr>
<td>Normal to bed joints</td>
<td>Solid units</td>
<td>53 (366)</td>
<td>46 (327)</td>
</tr>
<tr>
<td></td>
<td>Hollow units</td>
<td>55 (393)</td>
<td>48 (345)</td>
</tr>
<tr>
<td></td>
<td>Unground and partial</td>
<td>55 (393)</td>
<td>48 (345)</td>
</tr>
<tr>
<td></td>
<td>Fully ground</td>
<td>55 (393)</td>
<td>48 (345)</td>
</tr>
<tr>
<td>Parallel to bed joints in running bond</td>
<td>Solid units</td>
<td>106 (751)</td>
<td>66 (461)</td>
</tr>
<tr>
<td></td>
<td>Hollow units</td>
<td>106 (751)</td>
<td>66 (461)</td>
</tr>
<tr>
<td></td>
<td>Unground and partial</td>
<td>106 (751)</td>
<td>66 (461)</td>
</tr>
<tr>
<td></td>
<td>Fully ground</td>
<td>106 (751)</td>
<td>66 (461)</td>
</tr>
<tr>
<td>Parallel to bed joints in masonry on bed in running bond</td>
<td>133 (917)</td>
<td>133 (917)</td>
<td>133 (917)</td>
</tr>
<tr>
<td>Continuous grout section parallel to bed joints</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

1. For partially ground masonry, allowable stresses shall be determined on the basis of linear interpolation between fully ground hollow units and ungrounded hollow units based on amount (percentage) of grinding.

- flexure
 - $F_b = \frac{1}{3} f_m'$ (unreinforced)
 - $F_b = 0.45 f_m'$ (reinforced)

- shear, unreinforced masonry
 - $F_v = 1.5 \sqrt{f_m'} \leq 120$ psi

- shear, reinforced masonry
 - $M/Vd \leq 0.25$:
 - $F_v = 3.0 \sqrt{f_m'}$
 - $M/Vd \geq 1.0$:
 - $F_v = 2.0 \sqrt{f_m'}$
Allowable Reinforcement Stress

- **tension**
 - a) Grade 40 or 50 \(F_s = 20 \text{ ksi} \)
 - b) Grade 60 \(F_s = 32 \text{ ksi} \)
 - c) Wire joint \(F_s = 30 \text{ ksi} \)

- *no allowed increase by 1/3 for combinations with wind & earthquake*
 – did before 2011 MSJC code

Reinforcement, \(M_s \)

\[
\Sigma F = 0: \quad A_s f_s = f_m b \frac{kd}{2}
\]

\[
\Sigma M \text{ about } C_m: \quad M_s = A_s f_s d = p b d^2 j f_s
\]

if \(f_s = F_s \) (allowable) the moment capacity is limited by the steel

MSJC: \(F_s = 20 \text{ ksi, 24 ksi or 30 ksi by type} \)

Reinforcement, \(M_m \)

\[
\Sigma F = 0: \quad A_s f_s = f_m b \frac{kd}{2}
\]

\[
\Sigma M \text{ about } T_s: \quad M_m = f_m b \frac{kd}{2} d = 0.5 f_m b d^2 j k
\]

if \(f_s = F_s \) (allowable) the moment capacity is limited by the steel

MSJC \(F_b = 0.33 f_m \)

Masonry Lintels

- **distributed load**
 - **triangular or trapezoidal**
Strategy for RM Flexural Design

• to size section and find reinforcement
 – find ρ_b knowing f'_m and f_y
 – size section for some $\rho < \rho_b$
 • get k, j
 • get b, d in nice units
 – size reinforcement (bar size & #): $A_s = \frac{M}{F_s j d}$
 – check design: $M_s = A_s F_s j d > M$
 \[
f_b = \frac{M}{0.5bd^2 jk} < F_b
 \]

Ultimate Strength Design

• LRFD
• like reinforced concrete
• useful when beam shear is high
• improved inelastic model
 – ex. earthquake loads

Masonry Columns and Pilasters

• must be reinforced

Masonry Columns and Pilasters

• considered a column when $b/t<3$ and $h/t>4$
 • b is width of “wall”
 • t is thickness of “wall”
• slender is
 – 8” one side
 – $h/t \leq 25$
• needs ties
• eccentricity may be required
Masonry Columns

- allowable axial load

\[P_a = \begin{cases}
0.25 f'_m A_n + 0.65 A_{st} F_{s} & \text{if } h/r \leq 99 \\
0.25 f'_m A_n + 0.65 A_{st} \left(\frac{70r}{h} \right)^2 & \text{if } h/r > 99
\end{cases} \]

- \(h = \) effective length
- \(r = \) radius of gyration
- \(A_n = \) effective area of masonry
- \(A_{st} = \) effective area of column reinforcement
- \(F_{s} = \) allowable compressive stress in column reinforcement

Masonry Walls (unreinforced)

- allowable axial stresses

\[F_a = \begin{cases}
0.25 f'_m \left[1 - \left(\frac{h}{140r} \right)^2 \right] & \text{if } h/r \leq 99 \\
0.25 f'_m \left(\frac{70r}{h} \right)^2 & \text{if } h/r > 99
\end{cases} \]

Design

- masonry columns and walls (unreinforced)

\[\frac{f_a}{F_a} + \frac{f_b}{F_b} \leq 1.0 \quad \text{and} \quad f_b - f_a \leq F_t \]

- \(h/r < 99 \)

\[F_a = 0.25 f'_m \left[1 - \left(\frac{h}{140r} \right)^2 \right] \]

- \(h/r > 99 \)

\[F_a = 0.25 f'_m \left(\frac{70r}{h} \right)^2 \]

\[F_b = 0.33 f'_m \]

Design

- masonry columns and walls - loading

- wind loading
- eccentric axial load
- “virtual” eccentricity, \(e_1 \)

\[\text{virtual eccentricity} \]

\[e_1 = \frac{M}{P} \]
Design
• masonry columns and walls – with rebar
 – wall reinforcement usually at center and ineffective in compression
 \[f_a + f_b \leq F_b \quad \text{provided} \quad f_a \leq F_a \]
 BENDING STRESS
 \[f_m = f_{m0} (kd)/2 \]
 AXIAL STRESS
 \[t_a = P/A \]
 for equilibrium: \[\sum F = P = C_m - T_s \]

Design Steps Knowing Loads
1. assume limiting stress
 • buckling, axial stress, combined stress
2. solve for \(r, A \) or \(S \)
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Final Exam Material
• my list:
 – systems
 • components & levels
 • design considerations
 – equilibrium - \(\Sigma F \) & \(\Sigma M \)
 • supports, trusses, cables, beams, pinned frames, rigid frames
 – materials
 • strain & stress (E), temperature, constraints

Final Exam Material
• my list (continued):
 – beams
 • distributed loads, tributary width, V&M, stresses, design, section properties (I & S), pitch, deflection
 – columns
 • stresses, design, section properties (I & r)
 – frames
 • P, V & M, P-\(\Delta \), effective length with joint stiffness, connection design, tension member design
Final Exam Material

• my list (continued):
 – foundations
 • types
 • sizing & structural design
 • overturning and sliding
 – design specifics
 • steel (ASD & LRFD)
 • concrete
 • wood
 • masonry