Structural Organization

- classifications
 - geometry
 - line-forming
 - surface-forming
 - stiffness
 - rigid
 - flexible
 - one-way or two-way
 - spatial organization and load transfer
 - materials

Structural Components

- bearing walls
- columns
- beams
- flat plates
- trusses
- arches
- shells
- cables

Bearing Walls
Bearing Walls

• behavior as “deep beams”

Columns & Walls

Beams & Plates

(a)

(b)

shorter

longer

shorter

longer

(a)

(b)
Trusses and Shells

- (c) Pitched Pratt truss
- (d) Pitched Howe truss

Arches and Cables

- (c) Uniform loads (horizontally) — parabolic.
- (d) Uniform loads (along the cable length) — catenary.

Building Framing

- Components or Assemblages

- One-level system
- Two-level system
- Three-level system

- Load-bearing walls
- Columns

- (a) Common types of horizontal spanning systems (one, two, and three level systems) used in relation to different types of load-bearing wall and columnar vertical support systems.

- Roofloads
 - Horizontal spanning system
 - Lateral support system

- Truss reactions cause compressive forces to develop in columns.
- Column reactions become forces on foundations (which distribute the forces into the earth).
System Selection

• evaluation of alternatives

Structural Design Criteria

• components stay together
• structure acts as whole to be stable
 – resist sliding
 – resist overturning
 – resist twisting and distortion
• internal stability
 – interconnectedness
• strength & stiffness

Structural Design Sequences

• first-order design
 – structural type and organization
 – design intent
 – contextual or programmatic
• second-order
 – structural strategies
 – material choice
 – structural systems
• third-order
 – member shaping & sizing
Systems by Materials

- Wood
- Steel
- Concrete
- Masonry
- Composite

Timber Construction

- all-wood framing systems
 - studs, beams, floor diaphragms, shearwalls
 - glulam arches & frames
 - post & beams
 - trusses
- composite construction
 - masonry shear walls
 - concrete
 - steel

Timber Construction

- studs, beams
- floor diaphragms & shear walls

Timber Construction

- glulam arches & frames
 - manufactured or custom shapes
 - glue laminated
 - bigger members
Timber Construction

- post & beam
- trusses

Steel

- cast iron – wrought iron - steel
- cables
- columns
- beams
- trusses
- frames

Steel Construction

- standard rolled shapes
- open web joists
- plate girders
- decking

http://nisee.berkeley.edu/godden
Steel Construction
- welding
- bolts

Concrete
- columns
- beams
- slabs
- domes
- footings

Concrete Construction
- cast-in-place
- tilt-up
- prestressing
- post-tensioning

Steel Construction
- fire proofing
 - cementicious spray
 - encasement in gypsum
 - intumescent – expands with heat
 - sprinkler system
Concrete Floor Systems

- types & spanning direction

Masonry

- columns
- walls
- lintels
- beams
- arches
- footings

Grids and Patterns

- often adopted early in design
 - give order
 - cellular, ex.
- vertical and horizontal
- square and rectangular
 - single-cell
 - aggregated bays
Grids and Patterns

Systems

- total of components
- behavior of whole
- classifications
 - one-way
 - two-way
 - tubes
 - braced
 - unbraced

One-Way Systems

- horizontal vs. vertical

Two-Way Systems

- spanning system less obvious
- horizontal
 - plates
 - slabs
 - space frames
- vertical
 - columns
 - walls
Two-Way Systems

- Flat-plate system
- Flat-slab system
- Two-way beams and slab system

Roof Shapes

- Coincide
- Within

Tubes & Cores

- Stiffness

Span Lengths

- Crucial in selection of system
- Maximum spans on charts aren’t absolute limits, but usual maximums
- Increase L, increase depth^2 required (ex. cantilever)
- Deflections depend on L
Approximate Depths

Loading Type and Structure Type

- light uniform loads
 - surface forming elements
 - those that pick up first load dictate spacing of other elements
- heavy concentrated loads
 - member design unique
- distributed vs. concentrated structural strategies
 - large beam vs. many smaller ones

Design Issues

- lateral stability – all directions

- configuration
Design Issues

• vertical load resistance

 - Walls
 - Columns

Design Issues

• lateral load resistance

 - Shear walls may be arranged in a box form to resist lateral loads from all directions.

 - When combined with other stability mechanisms, shear walls may be arranged so as to resist forces in only one direction of a building.

Design Issues

• lateral load resistance

 - Rigid frame structures require no additional bracing or shear walls, as shown in this elevation and plan.

 - The locations of braced frames or shear walls must be considered in relation to the elevation and plan of the building.

Design Issues

• multi-story
 - cores, tubes, braced frames

 - Shear walls are commonly used with columns and slab systems. In this elevation and plan, the shear walls are shown incorporated into a pair of rectangular cores.

 - Shear walls can be used with other stability mechanisms, such as columns and slabs.
Design Issues

• multi-story
 – avoid discontinuities
 • vertically
 • horizontally

Foundation Influence

• type may dictate fit
 – piles vs. mats vs. spread
 – capacity of soil to sustain loads
 • high capacity – smaller area of bearing needing and can spread out
 • low capacity – multiple contacts and big distribution areas

Grid Dependency on Floor Height

• wide grid = deep beams
 – increased building height
 – heavier
 – foundation design
• codes and zoning may limit
• utilize depth for mechanical

Large Spaces

• ex. auditoriums, gyms, ballrooms
• choices
 – separate two systems completely and connect along edges
 – embed in finer grid
 – staggered truss
Meeting of Grids

• common to use more than one grid
• intersection important structurally
• can use different structural materials
 – need to understand their properties
 • mechanical
 • thermal

Meeting of Grids

• horizontal choices

Other Conditions

• circulation
• building service systems
 – one-way systems have space for parallel runs
 – trusses allow for transverse penetration
 – pass beneath or interstitial floors
 • for complex or extensive services or flexibility
Other Conditions

• poking holes for member services
 – horizontal
 • need to consider area removed, where removed, and importance to shear or bending
 – vertical
 • requires framing at edges
 • can cluster openings to eliminate a bay
 – double systems

Fire Safety & Structures

• fire safety requirements can impact structural selection
• construction types
 – light
 • residential
 • wood-frame or unprotected metal
 – medium
 • masonry
 – heavy
 • protected steel or reinforced concrete

Fire Safety & Structures

• degree of occupancy hazards
• building heights
• maximum floor areas between fire wall divisions
 – can impact load bearing wall location

Fire Safety & Structures

• resistance ratings by failure type
 – transmission failure
 • fire or gasses move
 – structural failure
 • high temperatures reduce strength
 – failure when subjected to water spray
 • necessary strength
 • ratings do not pertain to usefulness of structure after a fire