forces and moments

Structural Math

• **physics takes observable phenomena and relates the measurement with rules:** mathematical relationships

• **need**
 – reference frame
 – measure of length, mass, time, direction, velocity, acceleration, work, heat, electricity, light
 – calculations & geometry

• quantify environmental loads
 – how big is it?

• evaluate geometry and angles
 – where is it?
 – what is the scale?
 – what is the size in a particular direction?

• quantify what happens in the structure
 – how big are the internal forces?
 – how big should the beam be?

Physics for Structures

• measures
 – US customary & SI

<table>
<thead>
<tr>
<th>Units</th>
<th>US</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>in, ft, mi</td>
<td>mm, cm, m</td>
</tr>
<tr>
<td>Volume</td>
<td>gallon</td>
<td>liter</td>
</tr>
<tr>
<td>Mass</td>
<td>lb mass</td>
<td>g, kg</td>
</tr>
<tr>
<td>Force</td>
<td>lb force</td>
<td>N, kN</td>
</tr>
<tr>
<td>Temperature</td>
<td>F</td>
<td>C</td>
</tr>
</tbody>
</table>
Physics for Structures

- **scalars** – any quantity
- **vectors** - quantities with direction
 - like displacements
 - summation results in the “straight line path” from start to end
 - **normal vector** is perpendicular to something

![Diagram of vectors and Cartesian coordinates]

Language

- **symbols for operations**: +, -, /, x
- **symbols for relationships**: (), =, <, >
- **algorithms**
 - cancellation
 - factors
 - signs
 - ratios and proportions
 - power of a number
 - conversions, ex. \(1X = 10 \ Y \)
 - operations on both sides of equality

\[
\frac{10Y}{1X} \quad \text{or} \quad \frac{1X}{10Y} = 1
\]

On-line Practice

- eCampus / Study Aids

Geometry

- **angles**
 - right \(= 90^\circ \)
 - acute \(< 90^\circ \)
 - obtuse \(> 90^\circ \)
 - \(\pi = 180^\circ \)
- **triangles**
 - area \(= \frac{b \times h}{2} \)
 - hypotenuse
 - total of angles = \(180^\circ \)

\[
AB^2 + AC^2 = BC^2
\]
Geometry

- lines and relation to angles
 - parallel lines can’t intersect
 - perpendicular lines cross at 90°
 - intersection of two lines is a point
 - opposite angles are equal when two lines cross

Geometry

- intersection of a line with parallel lines results in identical angles
- two lines intersect in the same way, the angles are identical

Geometry

- sides of two angles are parallel and intersect opposite way, the angles are supplementary - the sum is 180°
- two angles that sum to 90° are said to be complimentary

Geometry

- sides of two angles bisect a right angle (90°), the angles are complimentary
- right angle bisects a straight line, remaining angles are complimentary
Geometry

- **similar triangles have proportional sides**

\[
\frac{AB}{AD} = \frac{AC}{AE} = \frac{BC}{DE}
\]

![Similar Triangles Diagram](image)

Trigonometry

- **for right triangles**

\[
\sin \alpha = \frac{\text{opposite side}}{\text{hypotenuse}} = \frac{AB}{CB}
\]

\[
\cos \alpha = \frac{\text{adjacent side}}{\text{hypotenuse}} = \frac{AC}{CB}
\]

\[
\tan \alpha = \frac{\text{opposite side}}{\text{adjacent side}} = \frac{AB}{AC}
\]

SOHCAHTOA

Trigonometry

- **cartesian coordinate system**
 - origin at 0,0
 - coordinates in (x,y) pairs
 - x & y have signs

- **for angles starting at positive x**
 - sin is y side
 - cos is x side

\[
\sin \text{ is y side for 180-360°}
\]

\[
\cos \text{ is x side for 90-270°}
\]

\[
\tan \text{ is y/x for 0-180°}
\]

\[
\tan \text{ is y/x for 270-360°}
\]
Trigonometry

- for all triangles
 - sides A, B & C are opposite angles α, β & γ

- LAW of SINES
 \[
 \frac{\sin \alpha}{A} = \frac{\sin \beta}{B} = \frac{\sin \gamma}{C}
 \]

- LAW of COSINES
 \[
 A^2 = B^2 + C^2 - 2BC \cos \alpha
 \]

Algebra

- equations (something = something)
- constants
 - real numbers or shown with a, b, c...
- unknown terms, variables
 - names like R, F, x, y
- linear equations
 - unknown terms have no exponents
- simultaneous equations
 - variable set satisfies all equations

Algebra

- solving one equation
 - only works with one variable
 - ex:
 \[
 2x - 1 = 0
 \]
 - add to both sides
 \[
 2x - 1 + 1 = 0 + 1
 \]
 \[
 2x = 1
 \]
 - divide both sides
 \[
 \frac{2x}{2} = \frac{1}{2}
 \]
 \[
 x = \frac{1}{2}
 \]
Algebra

- solving two equation
 - only works with two variables
 - ex: \(2x + 3y = 8\)
 - look for term similarity \(12x - 3y = 6\)
 - can we add or subtract to eliminate one term?
 - add \(2x + 3y + 12x - 3y = 8 + 6\)
 - get \(x\) by itself on a side \(14x = 14\) \(\frac{14x}{14} = \frac{14}{14} = x = 1\)

Forces

- statics
 - physics of forces and reactions on bodies and systems
 - equilibrium (bodies at rest)

- forces
 - something that exerts on an object:
 - motion
 - tension
 - compression

Forces Characteristics

- applied at a point
- magnitude
 - Imperial units: lb, k (kips)
 - SI units: N (newtons), kN
- direction

- “action of one body on another that affects the state of motion or rest of the body”
- Newton’s 3rd law:
 - for every force of action there is an equal and opposite reaction along the same line

http://www.physics.umd.edu
Forces on Rigid Bodies

- for statics, the bodies are ideally rigid
- can translate and rotate
- internal forces are
 - in bodies
 - between bodies (connections)
- external forces act on bodies

Transmissibility

- the force stays on the same line of action
- truck can’t tell the difference

Forces on Rigid Bodies

- only valid for EXTERNAL forces

Force System Types

- collinear

Force System Types

- coplanar
Force System Types
• space

Adding Vectors
• graphically
 – parallelogram law
 • diagonal
 • long for 3 or more vectors
 – tip-to-tail
 • more convenient with lots of vectors

Force Components
• convenient to resolve into 2 vectors
• at right angles
• in a “nice” coordinate system
• θ is between F_x and F from F_x
 $F_x = F \cos \theta$
 $F_y = F \sin \theta$
 $F = \sqrt{F_x^2 + F_y^2}$
 $\tan \theta = \frac{F_y}{F_x}$

Trigonometry
• F_x is negative
 – 90° to 270°
• F_y is negative
 – 180° to 360°
• \tan is positive
 – quads I & III
• \tan is negative
 – quads II & IV
Component Addition
- find all x components
- find all y components
- find sum of x components, R_x (resultant)
- find sum of y components, R_y

$$R = \sqrt{R_x^2 + R_y^2}$$

$$\tan \theta = \frac{R_y}{R_x}$$

Alternative Trig for Components
- doesn’t relate angle to axis direction
- ϕ is “small” angle between F and $EITHER F_x$ or F_y
- no sign out of calculator!
- have to choose RIGHT trig function, resulting direction (sign) and component axis

Friction
- resistance to movement
- contact surfaces determine μ
- proportion of normal force (\perp)
 - opposite to slide direction
 - static > kinetic

$$F = \mu N$$

Cables
- simple
- uses
 - suspension bridges
 - roof structures
 - transmission lines
 - guy wires, etc.
- have same tension all along
- can’t stand compression
Cables Structures
- use high-strength steel
- need
 - towers
 - anchors
- don’t want movement

Cable Loads
- straight line between forces
- with one force
 - concurrent
 - symmetric

Cable Loads
- shape directly related to the distributed load
Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- Patcenter, Rogers 1986

Patcenter, Rogers 1986

- column free space
- roof suspended
- solid steel ties
- steel frame supports masts

Patcenter, Rogers 1986

- dashes – cables pulling

Moments

- forces have the tendency to make a body rotate about an axis

- same translation but different rotation
Moments

- defined by magnitude and direction
- units: \(N \cdot m, k \cdot ft \)
- direction:
 - + ccw (right hand rule)
 - - cw
- value found from \(F \) and \(\perp \) distance
 \[M = F \cdot d \]
- \(d \) also called “lever” or “moment” arm

Moments

- a force acting at a different point causes a different moment:

\[\neq \]

Moments

- with same \(F \):
 \[M_A = F \cdot d_1 < M_A = F \cdot d_2 \] (bigger)
Moments

- additive with sign convention
- can still move the force along the line of action

Moments

- Varignon’s Theorem
 - resolve a force into components at a point and finding perpendicular distances
 - calculate sum of moments
 - equivalent to original moment
- makes life easier!
 - geometry
 - when component runs through point, \(d = 0 \)

Moments of a Force

- moments of a force
 - introduced in Physics as “Torque Acting on a Particle”
 - and used to satisfy rotational equilibrium

Physics and Moments of a Force

- my Physics book:
Moment Couples

- **2 forces**
 - same size
 - opposite direction
 - distance d apart
 - cw or ccw

\[M = F \cdot d \]

- not dependant on point of application

\[M = F \cdot d_1 - F \cdot d_2 \]

Moment Couples

- equivalent couples
 - same magnitude and direction
 - F & d may be different

Moment Couples

- added just like moments caused by one force
- can replace two couples with a single couple

Moment Couples

- moment couples in structures
Equivalent Force Systems

- two forces at a point is equivalent to the resultant at a point
- resultant is equivalent to two components at a point
- resultant of equal & opposite forces at a point is zero
- put equal & opposite forces at a point (sum to 0)
- transmission of a force along action line

Force-Moment Systems

- single force causing a moment can be replaced by the same force at a different point by providing the moment that force caused
- moments are shown as arched arrows

Parallel Force Systems

- forces are in the same direction
- can find resultant force
- need to find location for equivalent moments