wood construction: materials & beams
Wood Beam Design

- National Design Specification
 - National Forest Products Association
 - ASD & LRFD (combined 2005)
 - adjustment factors x tabulated stress = allowable stress
 - adjustment factors terms, C with subscript
 - i.e, bending:

\[f_b \leq F'_b = F_b \times \left(\text{product of adjustment factors} \right) \]
Timber

- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives
Wood Properties

- cell structure and density

http://www.swst.org/teach/set2/struct1.html
Wood Properties

• moisture
 – exchanges with air easily
 – excessive drying causes warping and shrinkage
 – strength varies some

• temperature
 – steam
 – volatile products
 – combustion

http://www.swst.org/teach/set2/struct1.html
Wood Properties

• **load duration**
 - short duration
 • higher loads
 - normal duration
 • > 10 years

• creep
 - additional deformation with no additional load
Structural Lumber

- **dimension** – 2 x’s (nominal)
- **beams, posts, timber, planks**
- **grading**
 - select structural
 - no. 1, 2, & 3
- **tabular values**
 - by species
- **glu-lam**
- **plywood**
Adjustment Factors

- terms
 - \(C_D \) = load duration factor
 - \(C_M \) = wet service factor
 - 1.0 dry \(\leq \) 19% MC sawn
 - 1.0 dry \(\leq \) 16% MC glu-lam
 - \(C_F \) = size factor
 - visually graded sawn lumber and round timber
 - depth > 12”

\[
C_F = \left(\frac{12}{d} \right)^{\frac{1}{9}} \leq 1.0
\]

Fig. 9.23 (pg 477)
Adjustment Factors

• **terms**
 - $C_{fu} = \text{flat use factor}$
 - not decking
 - $C_i = \text{incising factor}$
 - *increase depth for pressure treatment*
 - $C_t = \text{temperature factor}$
 - *lose strength at high temperatures*
Adjustment Factors

• **terms**

 – $C_r =$ repetitive member factor

 – $C_H =$ shear stress factor

 • splitting

 – $C_V =$ volume factor

 • same as C_F for glue laminated timber

 – $C_L =$ beam stability factor

 • beams without full lateral support

 – $C_C =$ curvature factor for laminated arches
Allowable Stresses

- **design values**
 - \(F_b \): bending stress
 - \(F_t \): tensile stress
 - \(F_v \): horizontal shear stress
 - \(F_{c\perp} \): compression stress (perpendicular to grain)
 - \(F_c \): compression stress (parallel to grain)
 - \(E \): modulus of elasticity
 - \(F_p \): bearing stress (parallel to grain)
Load Combinations

• *design loads, take the bigger of*
 – (dead loads)/0.9
 – (dead loads + any possible combination of live loads)/C_D

• *deflection limits*
 – *no load factors*
 – *for stiffer members:*
 • $\Delta_T \text{ max from } LL + 0.5(DL)$
Beam Design Criteria

- **strength design**
 - bending stresses predominate
 - shear stresses occur

- **serviceability**
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding
Beam Design Criteria

• superpositioning
 – use of beam charts
 – elastic range only!
 – “add” moment diagrams
 – “add” deflection CURVES (not maximums)

1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

\[
R = \frac{wl}{2} \\
V_x = w\left(\frac{l}{2} - x\right) \\
M_{\text{max. (at center)}} = \frac{wx^2}{8} \\
M_x = \frac{wx}{2} (l - x) \\
\Delta_{\text{max. (at center)}} = \frac{5wx^4}{384EI} \\
\Delta_x = \frac{wx}{24EI} (l^3 - 2lx^2 + x^3)
\]
Beam Deformations

- curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

\[
\frac{1}{R} = \frac{M}{EI}
\]

\[
\text{curvature} = \frac{M(x)}{EI}
\]

\[
\theta = \text{slope} = \int \frac{M(x)}{EI} \, dx
\]

\[
\Delta = \text{deflection} = \int \int \frac{M(x)}{EI} \, dx
\]
Deflection Limits

- based on service condition, severity

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y
Timber Beam Bracing

<table>
<thead>
<tr>
<th>Beam Depth/Width Ratio</th>
<th>Type of Lateral Bracing Required</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 to 1</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>3 to 1</td>
<td>The ends of the beam should be held in position</td>
<td></td>
</tr>
<tr>
<td>5 to 1</td>
<td>Hold the compression edge in line (continuously)</td>
<td></td>
</tr>
<tr>
<td>6 to 1</td>
<td>Diagonal bracing should be used</td>
<td></td>
</tr>
<tr>
<td>7 to 1</td>
<td>Both edges of the beam should be held in line</td>
<td></td>
</tr>
</tbody>
</table>
Design Procedure

1. Know F_{all} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{\text{req'd}}$ \(\left(f_b \leq F_b \right) \)

4. Determine section size

\[S = \frac{bh^2}{6} \]
Beam Design

4*. Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
Beam Design

6. Evaluate shear stresses - horizontal

- \((f_v \leq F_v)\)

- rectangles and W's
 \[f_{v_{-\text{max}}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}} \]

- general
 \[f_{v_{-\text{max}}} = \frac{VQ}{Ib} \]
Beam Design

7. Provide adequate bearing area at supports

\[f_p = \frac{P}{A} \leq F_p \]
Beam Design

8. Evaluate torsion

\((f_v \leq F_v)\)

- **circular cross section**
 \[f_v = \frac{T\rho}{J} \]

- **rectangular**
 \[f_v = \frac{T}{c_1 ab^2} \]

Table 3.1: Coefficients for Rectangular Bars in Torsion

<table>
<thead>
<tr>
<th>a/b</th>
<th>c₁</th>
<th>c₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>∞</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Beam Design

9. Evaluate deflections

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]
Decking

- across beams or joists
- floors: 16 in. span common
 - ¾ in. tongue-in-groove plywood
 - 5/8 in. particle board over ½ in. plywood
 - hardwood surfacing
- roofs: 24 in. span common
 - ½ in. plywood
Joists & Rafters

• allowable load tables (w)
• allowable length tables for common live & dead loads
• lateral bracing needed
• common spacings

![Image of floor joists and rafters with bridging and finish flooring]

Table 5.5 Allowable Spans in Feet and Inches for Floor Joists

<table>
<thead>
<tr>
<th>Joist Size (in)</th>
<th>Spacing (ft)</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 × 6</td>
<td>12.0</td>
<td>10-0</td>
<td>10-3</td>
<td>10-6</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>9-1</td>
<td>9-4</td>
<td>9-6</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>8-7</td>
<td>8-9</td>
<td>9-0</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>7-11</td>
<td>8-2</td>
<td>8-4</td>
</tr>
<tr>
<td>2 × 8</td>
<td>12.0</td>
<td>13-2</td>
<td>13-6</td>
<td>13-10</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>12-0</td>
<td>12-3</td>
<td>12-7</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>11-3</td>
<td>11-7</td>
<td>11-10</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>10-6</td>
<td>10-9</td>
<td>11-0</td>
</tr>
<tr>
<td>2 × 10</td>
<td>12.0</td>
<td>16-10</td>
<td>17-3</td>
<td>17-8</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>15-3</td>
<td>15-8</td>
<td>16-0</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>14-5</td>
<td>14-9</td>
<td>15-1</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>13-4</td>
<td>13-8</td>
<td>14-0</td>
</tr>
<tr>
<td>2 × 12</td>
<td>12.0</td>
<td>20-6</td>
<td>21-0</td>
<td>21-6</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>18-7</td>
<td>19-1</td>
<td>19-6</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>17-6</td>
<td>17-11</td>
<td>18-4</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>16-3</td>
<td>16-8</td>
<td>17-0</td>
</tr>
</tbody>
</table>

Definitions
- **Deflection:** For 40 psf (1.92 kN/m²) live load, limited to span in inches (mm) divided by 360.
- **Strength:** Live load of 40 psf (1.92 kN/m²) plus dead load of 10 psf (0.48 kN/m²) determined the Modulus of Elasticity, E, in 1,000,000 psi (0.008 ksi) for N/mm².
Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, decking, shear walls, diaphragms
Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms
Engineered Wood

• I sections
 – beams

• other products
 – pressed veneer strip panels (Parallam)
 – laminated veneer lumber (LVL)

• wood fibers
 – Hardieboard: cement & wood
Timber Elements

- stressed-skin elements
 - modular built-up “plates”
 - typically used for floors or roofs
Timber Elements

• built-up box sections
 – built-up beams
 – usually site-fabricated
 – bigger spans
Timber Elements

- **trusses**
 - long spans
 - versatile
 - common in roofs
Timber Elements

- folded plates and arch panels
 - usually of plywood
Timber Elements

• arches and lamellas
 – arches commonly laminated timber
 – long spans
 – usually only for roofs
Approximate Depths

FIGURE 15-3 Approximate span ranges for timber systems.

<table>
<thead>
<tr>
<th>Structural Type</th>
<th>Approximate Depths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planking</td>
<td>L/25–L/35</td>
</tr>
<tr>
<td>Joists</td>
<td>L/18–L/20</td>
</tr>
<tr>
<td>Stressed-skin panels</td>
<td>L/24–L/30</td>
</tr>
<tr>
<td>Laminated beams</td>
<td>L/18–L/20</td>
</tr>
<tr>
<td>Box beams</td>
<td>L/18–L/20</td>
</tr>
<tr>
<td>Trussed rafters</td>
<td>L/5–L/7</td>
</tr>
<tr>
<td>Open-web joists</td>
<td>L/18–L/20</td>
</tr>
<tr>
<td>Flat trusses</td>
<td>L/10–L/15</td>
</tr>
<tr>
<td>Shaped trusses</td>
<td>L/7–L/10</td>
</tr>
<tr>
<td>Plywood folded plates</td>
<td>L/7–L/12</td>
</tr>
<tr>
<td>Laminated arches</td>
<td>L/4–L/6</td>
</tr>
</tbody>
</table>

Span Feet

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

- **Minimum span**
- **Possible span range**
- **Maximum span**

- **Typical span for member**
- **Typical member length**