wood construction: connections
Connectors

- **joining**
 - lapping
 - interlocking
 - butting

- **mechanical**
 - “third-elements”

- **transfer load at a point, line or surface**
 - generally more than a point due to stresses
Wood Connectors

- **adhesives**
 - used in a controlled environment
 - can be used with nails

- **mechanical**
 - bolts
 - lag bolts or lag screws
 - nails
 - split ring and shear plate connectors
 - timber rivets
Wood Connections

• mechanical
Bolted Joints

- connected members in tension cause shear stress

- connected members in compression cause bearing stress
Tension Members

- members with holes have reduced area
- increased tension stress
- A_e is effective net area

\[
 f_t = \frac{P}{A_e} \left(\text{or} \frac{T}{A_{e}} \right)
\]
Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too
Single Shear

- seen when 2 members are connected

\[
f_v = \frac{P}{A} = \frac{P}{\pi \frac{d^2}{4}}
\]

Figure 5.11 A bolted connection—single shear.
(a) Two steel plates bolted using one bolt.
(b) Elevation showing the bolt in shear.
Double Shear

- seen when 3 members are connected

\[\Sigma F = 0 = -P + 2 \left(\frac{P}{2} \right) \]

\[f_v = \frac{P}{2A} = \frac{P}{2} = \frac{P}{2\pi d^2/4} \]

(two shear planes)

Free-body diagram of middle section of the bolt in shear.

Figure 5.12 A bolted connection in double shear.
Bearing Stress

- compression & contact
- stress limited by species & grain direction to load
- projected area

\[f_p = \frac{P}{A_{projected}} = \frac{P}{td} \]
Bolted Joints

• **twisting**

 - shearing
 - end distance & spacing

 [Diagram of bolted joint with labels: end distance, shear strength, twisted bolt, and underwashed wood.]

 Figure 1.—Higher connection capacities can be achieved with increased fastener spacings.

 Taylor & Line 2002

• **tear out**

 - shear strength
 - end distance & spacing

[Website: www.timber.org.au]
Nailed Joints

- tension stress (pullout)
- shear stress nails presumed to share load by distance from centroid of nail pattern
Nailed Joints

- sized by pennyweight units / length
- embedment length
- dense wood, more capacity

<table>
<thead>
<tr>
<th>Side Member Thickness, (t_s) (in.)</th>
<th>Nail Length, (L) (in.)</th>
<th>Nail Diameter, (D) (in.)</th>
<th>Pennyweight</th>
<th>Load per Nail for Douglas Fir-Larch (G = 0.50, Z) (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Plywood Side Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{3}{8})</td>
<td>2</td>
<td>0.113</td>
<td>6d</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2(\frac{1}{2})</td>
<td>0.131</td>
<td>8d</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.148</td>
<td>10d</td>
<td>76</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>2</td>
<td>0.113</td>
<td>6d</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2(\frac{1}{2})</td>
<td>0.131</td>
<td>8d</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.148</td>
<td>10d</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>3(\frac{1}{2})</td>
<td>0.162</td>
<td>16d</td>
<td>92</td>
</tr>
</tbody>
</table>

NDS
Connectors Resisting Beam Shear

- plates with
 - nails
 - rivets
 - bolts
- splices
- V from beam load related to $V_{\text{longitudinal}}$

\[
\frac{V_{\text{longitudinal}}}{p} = \frac{VQ}{I} \tag{1}
\]

\[
nF_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p
\]
Vertical Connectors

- isolate an area with vertical interfaces

\[n F_{\text{connector}} \geq \frac{VQ_{\text{connected area}}}{I} \cdot p \]