Steel construction: materials & beams
Steel Beam Design

- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - combined in 2005
Steel Materials

- smelt iron ore
- add alloying elements
- heat treatments
- iron, carbon
- microstructure

A36 steel, JOM 1998

AISC
Steel Materials

• cast into billets
• hot rolled
• cold formed
• residual stress
• corrosion-resistant “weathering” steels
• stainless
Steel Materials

- steel grades
 - ASTM A36 – carbon
 - plates, angles
 - $F_y = 36$ ksi & $F_u = 58$ ksi
 - ASTM A572 – high strength low-alloy
 - some beams
 - $F_y = 60$ ksi & $F_u = 75$ ksi
 - ASTM A992 – for building framing
 - most beams
 - $F_y = 50$ ksi & $F_u = 65$ ksi
Steel Properties

- high strength to weight ratio
- elastic limit – yield (F_y)
- inelastic – plastic
- ultimate strength (F_u)
- ductile
- strength sensitive to temperature
- can corrode
- fatigue

[Diagram of stress-strain curve]
Structural Steel

- standard rolled shapes \((W, C, L, T)\)
- open web joists
- plate girders
- decking
Steel Construction

- welding
- bolts
Steel Construction

- fire proofing
 - cementicious spray
 - encasement in gypsum
 - intumescent – expands with heat
 - sprinkler system
Unified Steel Design

- **ASD**
 \[R_a \leq \frac{R_n}{\Omega} \]
 - bending (braced) \(\Omega = 1.67 \)
 - bending (unbraced\(^*\)) \(\Omega = 1.67 \)
 - shear \(\Omega = 1.5 \) or \(1.67 \)
 - shear (bolts & welds) \(\Omega = 2.00 \)
 - shear (welds) \(\Omega = 2.00 \)

\(^*\) flanges in compression can buckle
Unified Steel Design

- braced vs. unbraced
LRFD

• loads on structures are
 – not constant
 – can be more influential on failure
 – happen more or less often
 – UNCERTAINTY

\[R_u = \gamma_D R_D + \gamma_L R_L \leq \phi R_n \]

\(\phi \) - resistance factor
\(\gamma \) - load factor for (D)ead & (L)ive load
LRFD Steel Beam Design

- limit state is yielding all across section
- outside elastic range
- load factors & resistance factors

\[f_y = 50 \text{ksi} \]
\[\varepsilon_y = 0.001724 \]
LRFD Load Combinations

- **1.4D**
- **1.2D + 1.6L + 0.5(L_r or S or R)**
- **1.2D + 1.6(L_r or S or R) + (L or 0.5W)**
- **1.2D + 1.0W + L + 0.5(L_r or S or R)**
- **1.2D + 1.0E + L + 0.2S**
- **0.9D + 1.0W**
- **0.9D + 1.0E**
 - F has same factor as D in 1-5 and 7
 - H adds with 1.6 and resists with 0.9 (permanent)
Beam Design Criteria (revisited)

- **strength design**
 - bending stresses predominate
 - shear stresses occur

- **serviceability**
 - limit deflection
 - stability

- **superpositioning**
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)
Steel Beams

- lateral stability - bracing
- local buckling – stiffen, or bigger I_y
Local Buckling

- Steel I beams
- Flange
 - buckle in direction of smaller radius of gyration
- Web
 - Force
 - “crippling”
Local Buckling

- flange
- web
Shear in Web

- panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners
Shear in Web

- plate girders and stiffeners
Steel Beams

• **bearing**
 – provide adequate area
 – prevent local yield of flange and web

Figure 9.10 Considerations for bearing in beams with thin webs, as related to web crippling (buckling of the thin web in compression).
\[\sum \gamma_i R_i = M_u \leq \phi_b M_n = 0.9 F_y Z \]

- \(M_u \) - maximum moment
- \(\phi_b \) - resistance factor for bending = 0.9
- \(M_n \) - nominal moment (ultimate capacity)
- \(F_y \) - yield strength of the steel
- \(Z \) - plastic section modulus*
Internal Moments - at yield

- material hasn’t failed

\[
M_y = \frac{I}{c} f_y = \frac{bh^2}{6} f_y
\]

\[
= \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y
\]
Internal Moments - ALL at yield

- all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{\text{tension}} = A_{\text{compression}}$

$$M_p = bc^2 f_y = \frac{3}{2} M_y$$
n.a. of Section at Plastic Hinge

- cannot guarantee at centroid
- \(f_{y}A_1 = f_{y}A_2 \)
- moment found from yield stress times moment area

\[
M_p = f_{y}A_1d = f_{y} \sum_{n.a} A_i d_i
\]
Plastic Hinge Development

(a) $M < M_Y$

(b) $M = M_Y$

(c) $M > M_Y$

(d) $M = M_p$
Plastic Hinge Examples

- stability can be effected
Plastic Section Modulus

- **shape factor, \(k \)**

 \[k = \frac{M_p}{M_y} \]

 = 3/2 for a rectangle

 ≈ 1.1 for an \(I \)

- **plastic modulus, \(Z \)**

 \[Z = \frac{M_p}{f_y} \]
LRFD – Shear (compact shapes)

\[\sum \gamma_i R_i = V_u \leq \phi_v V_n = 1.0(0.6F_{yw}A_w) \]

- \(V_u \) - maximum shear
- \(\phi_v \) - resistance factor for shear = 1.0
- \(V_n \) - nominal shear
- \(F_{yw} \) - yield strength of the steel in the web
- \(A_w \) - area of the web = \(t_wd \)
LRFD - Flexure Design

• limit states for beam failure
 1. yielding
 2. lateral-torsional buckling*
 3. flange local buckling
 4. web local buckling

• minimum M_n governs

$$\sum \gamma_i R_i = M_u \leq \phi_b M_n$$

$$L_p = 1.76 r_y \sqrt{\frac{F_y}{E}}$$
Compact Sections

- plastic moment can form before any buckling
- criteria

\[
b \leq \frac{bf}{2tf} \leq 0.38 \sqrt{\frac{E}{Fy}}
\]

- and \(\frac{hc}{tw} \leq 3.76 \sqrt{\frac{E}{Fy}} \)
Lateral Torsional Buckling

\[M_n = C_b \left[\frac{\text{moment based on lateral buckling}}{\text{max|moment|, unbraced segment}} \right] \leq M_p \]

\[C_b = \frac{12.5M_{max}}{2.5M_{max} + 2M_A + 4M_B + 3M_C} \]

- \(C_b \) = modification factor
- \(M_{max} \) = |max moment|, unbraced segment
- \(M_A \) = |moment|, 1/4 point
- \(M_B \) = |moment|, center point
- \(M_C \) = |moment|, 3/4 point

Steel Beams 32
Lecture 15

Architectural Structures
ARCH 331

Su2016abn
Beam Design Charts

Table 3–10 (continued)

W Shapes

Available Moment vs. Unbraced Length

Unbraced Length (0.5-ft increments)
Charts & Deflections

• beam charts
 – solid line is most economical
 – dashed indicates there is another more economical section
 – self weight is NOT included in M_n

• deflections
 – no factors are applied to the loads
 – often governs the design
Design Procedure (revisited)

1. Know unbraced length, material, design method \((\Omega, \phi)\)

2. Draw V & M, finding \(M_{\text{max}}\)

3. Calculate \(Z_{\text{req'd}}\) \((M_a \leq M_n/\Omega)\)
 \((M_u \leq \phi_b M_n)\)

4. Choose (economical) section from section or beam capacity charts
Beam Charts by S_x (Appendix)

Table A9 Elastic Section Modulus—U.S. and S.I. Metric.

<table>
<thead>
<tr>
<th>Allowable Stress Design—Selected beam shapes</th>
<th>S_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_x—U.S. (in.3)</td>
<td>Section</td>
</tr>
<tr>
<td>448</td>
<td>W33 × 141</td>
</tr>
<tr>
<td>439</td>
<td>W36 × 135</td>
</tr>
<tr>
<td>411</td>
<td>W27 × 146</td>
</tr>
<tr>
<td>406</td>
<td>W33 × 130</td>
</tr>
<tr>
<td>380</td>
<td>W30 × 132</td>
</tr>
<tr>
<td>371</td>
<td>W24 × 146</td>
</tr>
<tr>
<td>359</td>
<td>W33 × 118</td>
</tr>
<tr>
<td>355</td>
<td>W30 × 124</td>
</tr>
<tr>
<td>329</td>
<td>W30 × 116</td>
</tr>
<tr>
<td>329</td>
<td>W24 × 131</td>
</tr>
<tr>
<td>329</td>
<td>W21 × 147</td>
</tr>
</tbody>
</table>
Beam Charts by Z_x (Appendix)

Table A11 Plastic Section Modulus—Selected Beam Shapes.

<table>
<thead>
<tr>
<th>Z_x (in.(^3))</th>
<th>Section</th>
<th>A (in.(^2))</th>
<th>d (in.)</th>
<th>h (in.)</th>
<th>b_1 (in.)</th>
<th>t_{f} (in.)</th>
<th>t_{w} (in.)</th>
<th>$\phi_{0}M_p$ (k-ft.)</th>
<th>$\phi_{0}M_s$ (k-ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>378</td>
<td>W30 x 116</td>
<td>34.2</td>
<td>30.01</td>
<td>26.75</td>
<td>10.50</td>
<td>0.850</td>
<td>0.565</td>
<td>1,420</td>
<td>987</td>
</tr>
<tr>
<td>373</td>
<td>W21 x 147</td>
<td>43.2</td>
<td>22.06</td>
<td>18.25</td>
<td>12.51</td>
<td>1.150</td>
<td>0.720</td>
<td>1,400</td>
<td>987</td>
</tr>
<tr>
<td>370</td>
<td>W24 x 131</td>
<td>38.5</td>
<td>24.48</td>
<td>21.00</td>
<td>12.86</td>
<td>0.960</td>
<td>0.605</td>
<td>1,390</td>
<td>987</td>
</tr>
<tr>
<td>346</td>
<td>W30 x 108</td>
<td>31.7</td>
<td>29.83</td>
<td>26.75</td>
<td>10.48</td>
<td>0.760</td>
<td>0.545</td>
<td>1,300</td>
<td>897</td>
</tr>
<tr>
<td>343</td>
<td>W27 x 114</td>
<td>33.5</td>
<td>27.29</td>
<td>24.00</td>
<td>10.07</td>
<td>0.930</td>
<td>0.570</td>
<td>1,290</td>
<td>897</td>
</tr>
<tr>
<td>333</td>
<td>W21 x 132</td>
<td>38.8</td>
<td>21.38</td>
<td>18.25</td>
<td>12.44</td>
<td>1.035</td>
<td>0.650</td>
<td>1,250</td>
<td>885</td>
</tr>
<tr>
<td>327</td>
<td>W24 x 117</td>
<td>34.4</td>
<td>24.26</td>
<td>21.00</td>
<td>12.80</td>
<td>0.850</td>
<td>0.550</td>
<td>1,230</td>
<td>873</td>
</tr>
<tr>
<td>322</td>
<td>W18 x 143</td>
<td>42.1</td>
<td>19.49</td>
<td>15.5</td>
<td>11.22</td>
<td>1.320</td>
<td>0.730</td>
<td>1,210</td>
<td>846</td>
</tr>
<tr>
<td>312</td>
<td>W30 x 99</td>
<td>29.1</td>
<td>29.65</td>
<td>26.75</td>
<td>10.45</td>
<td>0.670</td>
<td>0.520</td>
<td>1,170</td>
<td>807</td>
</tr>
<tr>
<td>307</td>
<td>W21 x 122</td>
<td>35.9</td>
<td>21.68</td>
<td>18.25</td>
<td>12.39</td>
<td>0.960</td>
<td>0.600</td>
<td>1,150</td>
<td>819</td>
</tr>
<tr>
<td>305</td>
<td>W27 x 102</td>
<td>30.0</td>
<td>27.09</td>
<td>24.00</td>
<td>10.02</td>
<td>0.830</td>
<td>0.515</td>
<td>1,140</td>
<td>801</td>
</tr>
<tr>
<td>289</td>
<td>W24 x 104</td>
<td>30.6</td>
<td>24.06</td>
<td>21.00</td>
<td>12.75</td>
<td>0.750</td>
<td>0.500</td>
<td>1,080</td>
<td>774</td>
</tr>
<tr>
<td>279</td>
<td>W21 x 111</td>
<td>32.7</td>
<td>21.51</td>
<td>18.25</td>
<td>12.34</td>
<td>0.875</td>
<td>0.550</td>
<td>1,050</td>
<td>747</td>
</tr>
<tr>
<td>278</td>
<td>W27 x 94</td>
<td>27.7</td>
<td>26.92</td>
<td>24.00</td>
<td>9.90</td>
<td>0.745</td>
<td>0.490</td>
<td>1,040</td>
<td>729</td>
</tr>
<tr>
<td>261</td>
<td>W18 x 119</td>
<td>35.1</td>
<td>18.92</td>
<td>15.50</td>
<td>11.27</td>
<td>1.060</td>
<td>0.655</td>
<td>979</td>
<td>693</td>
</tr>
</tbody>
</table>

Steel Beams 37
Lecture 18
Architectural Structures
ARCH 331
Su2016abn
Beam Design (revisited)

4*. Include self weight for M_{max}

- it’s dead load
- and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
Beam Design (revisited)

6. Evaluate shear - horizontal

- \((V_a \leq V_{nt}/\Omega)\) or \((V_u \leq \phi \, V_n)\)

- rectangles and W’s

\[f_{v-max} = \frac{3V}{2A} \approx \frac{V}{A_{web}} \]

\[V_n = 0.6 \, F_{yw} \, A_w \]

- general

\[f_{v-max} = \frac{VQ}{I_b} \]
Beam Design (revisited)

7. Provide adequate bearing area at supports

\[
(P_a \leq \frac{P_n}{\Omega}) \\
(P_u \leq \phi P_n)
\]
Beam Design (revisited)

8. Evaluate torsion

\(f_v \leq F_v \)

- **circular cross section**

\[f_v = \frac{T\rho}{J} \]

- **rectangular**

\[f_v = \frac{T}{c_1 ab^2} \]

TABLE 3.1. Coefficients for Rectangular Bars in Torsion

<table>
<thead>
<tr>
<th>(a/b)</th>
<th>(c_1)</th>
<th>(c_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1988</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Beam Design (revisited)

9. Evaluate deflections – NO LOAD FACTORS

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]
Load Tables & Equivalent Load

- uniformly distributed loads
- equivalent “w”
 \[M_{\text{max}} = \frac{W_{\text{equivalent}} L^2}{8} \]

Load Table for Open Web Steel Joists, K-Series

<table>
<thead>
<tr>
<th>Joint Designation</th>
<th>10K1</th>
<th>12K1</th>
<th>12K3</th>
<th>12K5</th>
<th>14K1</th>
<th>14K3</th>
<th>14K4</th>
<th>14K6</th>
<th>16K2</th>
<th>16K3</th>
<th>16K4</th>
<th>16K6</th>
<th>16K8</th>
<th>16K9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (in.)</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Approx. Wt. (lbs./ft.)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.2</td>
<td>6.0</td>
<td>6.7</td>
<td>6.7</td>
<td>7.7</td>
<td>7.7</td>
<td>5.5</td>
<td>6.3</td>
</tr>
<tr>
<td>Span (ft.)</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>718</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>363</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>537</td>
<td>651</td>
<td>614</td>
<td>825</td>
<td>766</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>344</td>
<td>428</td>
<td>434</td>
<td>475</td>
<td>507</td>
<td>507</td>
<td>507</td>
<td>507</td>
<td>507</td>
<td>507</td>
<td>507</td>
<td>507</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>669</td>
<td>750</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>299</td>
<td>425</td>
<td>463</td>
<td>463</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>246</td>
<td>651</td>
<td>614</td>
<td>825</td>
<td>766</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>192</td>
<td>282</td>
<td>351</td>
<td>396</td>
<td>390</td>
<td>467</td>
<td>467</td>
<td>467</td>
<td>467</td>
<td>467</td>
<td>467</td>
<td>467</td>
<td>467</td>
<td>467</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>234</td>
<td>291</td>
<td>366</td>
<td>324</td>
<td>494</td>
<td>443</td>
<td>443</td>
<td>443</td>
<td>443</td>
<td>443</td>
<td>443</td>
<td>443</td>
<td>443</td>
</tr>
<tr>
<td></td>
<td>169</td>
<td>244</td>
<td>317</td>
<td>372</td>
<td>339</td>
<td>507</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>157</td>
<td>225</td>
<td>282</td>
<td>249</td>
<td>347</td>
<td>347</td>
<td>347</td>
<td>347</td>
<td>347</td>
<td>347</td>
<td>347</td>
<td>347</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>216</td>
<td>310</td>
<td>386</td>
<td>442</td>
<td>409</td>
<td>577</td>
<td>526</td>
<td>526</td>
<td>526</td>
<td>526</td>
<td>526</td>
<td>526</td>
<td>526</td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>142</td>
<td>177</td>
<td>230</td>
<td>193</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>361</td>
<td>453</td>
<td>613</td>
<td>542</td>
<td>642</td>
<td>787</td>
<td>552</td>
<td>615</td>
<td>739</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>142</td>
<td>177</td>
<td>230</td>
<td>193</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>327</td>
<td>409</td>
<td>555</td>
<td>585</td>
<td>483</td>
<td>582</td>
<td>712</td>
<td>499</td>
<td>556</td>
<td>670</td>
<td>754</td>
<td>822</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>153</td>
<td>186</td>
<td>170</td>
<td>212</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>227</td>
<td>273</td>
<td>320</td>
<td>351</td>
<td>439</td>
<td>529</td>
<td>648</td>
<td>454</td>
<td>505</td>
<td>609</td>
<td>687</td>
<td>747</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>271</td>
<td>340</td>
<td>462</td>
<td>521</td>
<td>402</td>
<td>483</td>
<td>592</td>
<td>415</td>
<td>462</td>
<td>556</td>
<td>627</td>
<td>682</td>
<td>760</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>289</td>
<td>365</td>
<td>463</td>
<td>524</td>
<td>402</td>
<td>483</td>
<td>592</td>
<td>415</td>
<td>462</td>
<td>556</td>
<td>627</td>
<td>682</td>
<td>760</td>
<td>825</td>
</tr>
</tbody>
</table>

Load for live load deflection limit in RED, total in BLACK
Sloped Beams

- stairs & roofs
- projected live load
- dead load over length

- perpendicular load to beam:
 \[W_{\perp} = w \cdot \cos \alpha \]

- equivalent distributed load:
 \[W_{adj.} = \frac{w}{\cos \alpha} \]
Steel Arches and Frames

- solid sections
 or open web

http://nisee.berkeley.edu/godden
Steel Shell and Cable Structures
Approximate Depths

<table>
<thead>
<tr>
<th>Type</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decking</td>
<td>L/30−L/50</td>
</tr>
<tr>
<td>Wide flanges</td>
<td>L/18−L/28</td>
</tr>
<tr>
<td>Plate girders</td>
<td>L/15−L/20</td>
</tr>
<tr>
<td>Open-web joists</td>
<td>L/18−L/22</td>
</tr>
<tr>
<td>Fink truss</td>
<td>L/4−L/5</td>
</tr>
<tr>
<td>Howe truss</td>
<td>L/4−L/5</td>
</tr>
<tr>
<td>Bowstring truss</td>
<td>L/6−L/10</td>
</tr>
<tr>
<td>Special truss</td>
<td>L/4−L/15</td>
</tr>
<tr>
<td>Arches</td>
<td>L/3−L/5</td>
</tr>
<tr>
<td>Ribbed domes</td>
<td>L/3−L/5</td>
</tr>
<tr>
<td>Cables</td>
<td>L/5−L/11</td>
</tr>
<tr>
<td>Space frame (column-supported)</td>
<td>L/12−L/20</td>
</tr>
<tr>
<td>Space frame (wall-supported)</td>
<td>L/12−L/20</td>
</tr>
</tbody>
</table>

Key:
- Minimum span
- Possible span range
- Maximum span
- Typical span for member
- Typical member length