lecture twenty two

concrete construction:
flat spanning systems, columns & frames

http://nisee.berkeley.edu/godden
Reinforced Concrete Design

- economical & common
- resist lateral loads
Reinforced Concrete Design

• **flat plate**
 - 5”-10” thick
 - simple formwork
 - lower story heights

• **flat slab**
 - same as plate
 - 2 ¼”–8” drop panels
Reinforced Concrete Design

• **beam supported**
 - slab depth ~ \(L/20 \)
 - 8”–60” deep

• **one-way joists**
 - 3”–5” slab
 - 8”–20” stems
 - 5”-7” webs
Reinforced Concrete Design

• two-way joist
 – “waffle slab”
 – 3”-5” slab
 – 8”-24” stems
 – 6”-8” webs

• beam supported slab
 – 5”-10” slabs
 – taller story heights
Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous
Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - w_u from combos
 - uniform loads with $L/D \leq 3$
 - l_n is clear span (+M) or average of adjacent clear spans (-M)
Reinforced Concrete Design

Figure 2-3 Positive Moments—All Cases

Figure 2-4 Negative Moments—Beams and Slabs
Reinforced Concrete Design

- **two-way slabs - Direct Design Method**
 - 3 or more spans each way
 - uniform loads with $L/D \leq 3$
 - rectangular panels with long/short span ≤ 2
 - successive spans can’t differ $> \frac{\text{longer}}{3}$
 - column offset no more than 10% span
Reinforced Concrete Design

Table 4-6 Two-Way Beam-Supported Slab

<table>
<thead>
<tr>
<th>Span ratio</th>
<th>Slab Moments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Exterior</td>
<td>Positive</td>
<td>First Interior</td>
<td>Positive</td>
<td>Interior</td>
</tr>
<tr>
<td>0.5</td>
<td>Total Moment</td>
<td>0.16 M_o</td>
<td>0.57 M_o</td>
<td>0.70 M_o</td>
<td>0.35 M_o</td>
<td>0.65 M_o</td>
</tr>
<tr>
<td></td>
<td>Column Strip</td>
<td>0.12 M_o</td>
<td>0.43 M_o</td>
<td>0.54 M_o</td>
<td>0.27 M_o</td>
<td>0.50 M_o</td>
</tr>
<tr>
<td></td>
<td>Beam Slab</td>
<td>0.02 M_o</td>
<td>0.08 M_o</td>
<td>0.09 M_o</td>
<td>0.05 M_o</td>
<td>0.09 M_o</td>
</tr>
<tr>
<td></td>
<td>Middle Strip</td>
<td>0.02 M_o</td>
<td>0.06 M_o</td>
<td>0.07 M_o</td>
<td>0.03 M_o</td>
<td>0.06 M_o</td>
</tr>
<tr>
<td>1.0</td>
<td>Total Moment</td>
<td>0.10 M_o</td>
<td>0.37 M_o</td>
<td>0.45 M_o</td>
<td>0.22 M_o</td>
<td>0.42 M_o</td>
</tr>
<tr>
<td></td>
<td>Column Strip</td>
<td>0.02 M_o</td>
<td>0.06 M_o</td>
<td>0.08 M_o</td>
<td>0.04 M_o</td>
<td>0.07 M_o</td>
</tr>
<tr>
<td></td>
<td>Beam Slab</td>
<td>0.04 M_o</td>
<td>0.14 M_o</td>
<td>0.17 M_o</td>
<td>0.09 M_o</td>
<td>0.16 M_o</td>
</tr>
<tr>
<td>2.0</td>
<td>Total Moment</td>
<td>0.06 M_o</td>
<td>0.22 M_o</td>
<td>0.27 M_o</td>
<td>0.14 M_o</td>
<td>0.25 M_o</td>
</tr>
<tr>
<td></td>
<td>Column Strip</td>
<td>0.01 M_o</td>
<td>0.04 M_o</td>
<td>0.05 M_o</td>
<td>0.02 M_o</td>
<td>0.04 M_o</td>
</tr>
<tr>
<td></td>
<td>Beam Slab</td>
<td>0.09 M_o</td>
<td>0.31 M_o</td>
<td>0.38 M_o</td>
<td>0.19 M_o</td>
<td>0.36 M_o</td>
</tr>
</tbody>
</table>

Notes:

1. Beams and slab satisfy stiffness criteria: $\alpha_1 l_2 / l_1 \geq 1.0$ and $\beta_1 \geq 2.5$.
2. Interpolate between values shown for different l_2/l_1 ratios.
3. All negative moments are at face of support.
4. Concentrated loads applied directly to beams must be accounted for separately.
Shear in Concrete

• at columns
• want to avoid stirrups
• can use shear studs or heads
Shear in Concrete

- critical section at $d/2$ from
 - column face, column capital or drop panel
Shear in Concrete

• at columns with waffle slabs
Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase
General Beam Design

- f'_c & f_y needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - $b:h$ of 1:1.5-1:2.5
 - b_w & b_f for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear

$$S = \frac{bh^2}{6}$$

Figure 14.5 Common shapes for beams.
General Beam Design (cont’d)

• **custom design:**
 - longitudinal steel
 - shear reinforcement
 - detailing
Space “Frame” Behavior

• handle uniformly distributed loads well

• bending moment
 – tension & compression “couple” with depth
 – member sizes can vary, but difficult
Space “Frame” Behavior

- shear at columns
- support conditions still important
 - point supports not optimal
- fabrication/construction can dominate design
Folded Plates

- increased bending stiffness with folding
- lateral buckling avoided

(a) roof plan

(b) roof plan

compression
dashed line tension
Folded Plates

- common for roofs
- edges need stiffening

[Images of architectural structures]
Folded Plates

- State Farm Center (Assembly Hall), University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire
Concrete in Compression

- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear
- f'_c
Columns Reinforcement

- columns require
 - ties or spiral reinforcement to "confine" concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (4 bars minimum)
Slenderness

- effective length in monolithic with respect to stiffness of joint: $\Psi \& k$
- not slender when

$$\frac{kL_u}{r} \leq 22$$

*not braced

Fixed
Effective Length (revisited)

- relative rotation

\[
\Psi = \frac{\sum EI}{\sum EI/l_c}/\frac{l_c}{l_b}
\]
Column Behavior

Figure 13.3.2 Spirally reinforced column behavior. (Courtesy of Portland Cement Association.)

Figure 13.3.3 Tied column behavior. (Courtesy of Portland Cement Association.)
Column Design

- $\phi_c = 0.65$ for ties, $\phi_c = 0.75$ for spirals
- P_o - no bending
 \[P_o = 0.85 f_c'(A_g - A_{st}) + f_y A_{st} \]
- $P_u \leq \phi_c P_n$
 - ties: $P_n = 0.8P_o$
 - spiral: $P_n = 0.85P_o$
- **nominal axial capacity:**
 - presumes steel yields
 - concrete at ultimate stress
Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection ($P-\Delta$)

![Diagram of columns with bending](image)

Figure 10.6 Considerations for development of bending in steel columns; (a) bending induced by eccentric load, (b) bending transferred to column in a rigid frame, and (c) combined loading condition, separately producing axial compression and bending.
Columns with Bending

- for ultimate strength behavior, ultimate strains can’t be exceeded
 - concrete 0.003
 - steel \(\frac{f_y}{E_s} \)

- \(P \) reduces with \(M \)

Figure 13.6.1 Typical strength interaction diagram for axial compression and bending moment about one axis. Transition zone is where \(\epsilon_i \leq \epsilon_t \leq 0.005 \).
Columns with Bending

- need to consider combined stresses
- linear strain
- steel stress at or below f_y
- plot interaction diagram

Figure 5-3 Transition Stages on Interaction Diagram
Design Methods

- calculation intensive
 - handbook charts
 - computer programs
Design Considerations

- **bending at both ends**
 - $P - \Delta$ maximum

- **biaxial bending**

- **walls**
 - unit wide columns
 - “deep” beam shear

- **detailing**
 - shorter development lengths
 - dowels to footings