Architectural Structures: Form, Behavior, and Design

ARCH 331

Dr. Anne Nichols

Summer 2016

Lecture five

Mechanics of Materials

www.carttalk.com
Mechanics of Materials

• MECHANICS

• MATERIALS
Mechanics of Materials

- external loads and their effect on deformable bodies
- use it to answer question if structure meets requirements of
 - stability and equilibrium
 - strength and stiffness
- other principle building requirements
 - economy, functionality and aesthetics
Knowledge Required

- material properties
- member cross sections
- ability of a material to resist breaking
- structural elements that resist excessive
 - deflection
 - deformation

Figure 2.34 An example of torsion on a cantilever beam.
Problem Solving

1. STATICS:
 equilibrium of external forces, internal forces, stresses

2. GEOMETRY:
 cross section properties, deformations and conditions of geometric fit, strains

3. MATERIAL PROPERTIES:
 stress-strain relationship for each material obtained from testing
Stress

- **stress** is a term for the *intensity* of a force, like a pressure
- internal or applied
- force per unit area

\[
stress = f = \frac{P}{A}\]
Design

- materials have a critical stress value where they could break or yield
 - ultimate stress
 - yield stress
 - compressive stress
 - fatigue strength
 - (creep & temperature)
Design (cont)

- we’d like
 \[f_{\text{actual}} \ll F_{\text{allowable}} \]
- stress distribution may vary: average
- uniform distribution exists IF the member is loaded axially (concentric)
Scale Effect

- **model scale**
 - material weights by volume, small section areas

- **structural scale**
 - much more material weight, bigger section areas

- **scale for strength is not proportional:**
 \[
 \frac{\gamma L^3}{L^2} = \gamma L
 \]
Normal Stress (direct)

- **normal** stress is normal to the cross section
 - stressed area is perpendicular to the load

\[
f_{\text{t or c}} (\sigma) = \frac{P}{A}
\]

Figure 5.7 Two columns with the same load, different stress.
Shear Stress

- stress parallel to a surface

\[f_v = \frac{P}{A} = \frac{P}{td} \]
Bearing Stress

- stress on a surface by contact in compression

\[
f_p (\sigma) = \frac{P}{A} = \frac{P}{td}
\]

Figure 5.3 Centric loads.
Bending Stress

- normal stress caused by bending

\[f_b = \frac{Mc}{I} = \frac{M}{S} \]
Torsional Stress

- shear stress caused by twisting

\[f_v (\tau) = \frac{T\rho}{J} \]
Structures and Shear

- what structural elements see shear?
 - beams
 - bolts
 - splices
 - slabs
 - footings
 - walls
 - wind
 - seismic loads
Bolts

- connected members in tension cause shear stress

- connected members in compression cause bearing stress
Single Shear

- seen when 2 members are connected

\[f_v = \frac{P}{A} = \frac{P}{\pi \frac{d^2}{4}} \]

- (a) Two steel plates bolted using one bolt.
- (b) Elevation showing the bolt in shear.
- (c) (d) A bolted connection—single shear.
Double Shear

- seen when 3 members are connected
- two areas

\[f_v = \frac{P}{2A} = \frac{P}{A} \frac{1}{2} = \frac{P}{\pi d^2 / 4} \]

Free-body diagram of middle section of the bolt in shear.

Figure 5.12 A bolted connection in double shear.
Bolt Bearing Stress

- compression & contact
- projected area

\[f_p = \frac{P}{A_{\text{projected}}} = \frac{P}{td} \]
Strain

- materials deform
- axially loaded materials change length
- bending materials deflect

STRAIN:
- change in length over length + UNITLESS

\[
\text{strain } \varepsilon = \frac{\Delta L}{L}
\]
Shearing Strain

- deformations with shear
- parallelogram
- change in angles
- stress: τ
- strain: γ
 - unitless (radians)

\[
\gamma = \frac{\delta_s}{L} = \tan \phi \approx \phi
\]
Shearing Strain

• deformations with torsion
• twist
• change in angle of line

• stress: \(\tau \)
 \[\gamma = \frac{\rho \phi}{L} \]
• strain: \(\gamma \)
 – unitless (radians)
Load and Deformation

- for stress, need P & A
- for strain, need δ & L
 - how?
 - TEST with load and measure
 - plot P/A vs. ε
Material Behavior

- every material has its own response
 - 10,000 psi
 - \(L = 10 \text{ in} \)
 - Douglas Fir vs. steel?

Figure 5.20 Stress-strain diagram for various materials.
Behavior Types

- **ductile - “necking”**
- **true stress**

\[f = \frac{P}{A} \]

- **engineering stress**
 - (simplified)

\[f = \frac{P}{A_0} \]
Behavior Types

- **brittle**

- **semi-brittle**
Stress to Strain

- important to us in $f-\varepsilon$ diagrams:
 - straight section
 - LINEAR-ELASTIC
 - recovers shape (no permanent deformation)

Figure 5.20 Stress-strain diagram for various materials.
Hooke’s Law

- straight line has constant slope
- Hooke’s Law

\[f = E \cdot \varepsilon \]

- \(E \)
 - Modulus of elasticity
 - Young’s modulus
 - units just like stress
Stiffness

- ability to resist strain

- steels
 - same E
 - different yield points
 - different ultimate strength

Figure 5.20 Stress-strain diagram for various materials.
Isotropy & Anisotropy

• **ISOTROPIC**
 – materials with E same at any direction of loading
 – ex. steel

• **ANISOTROPIC**
 – materials with different E at any direction of loading
 – ex. wood is orthotropic
Elastic, Plastic, Fatigue

- elastic springs back
- plastic has permanent deformation
- fatigue caused by reversed loading cycles
Plastic Behavior

- ductile

Figure 5.22 Stress-strain diagram for mild steel (A36) with key points highlighted.

at yield stress
Lateral Strain

- or “what happens to the cross section with axial stress”

\[\varepsilon_x = \frac{f_x}{E} \]

\[f_y = f_z = 0 \]

- strain in lateral direction
 - negative
 - equal for isometric materials

\[\varepsilon_y = \varepsilon_z \]
Poisson’s Ratio

- constant relationship between longitudinal strain and lateral strain

\[
\mu = -\frac{\text{lateral strain}}{\text{axial strain}} = -\frac{\varepsilon_y}{\varepsilon_x} = -\frac{\varepsilon_z}{\varepsilon_x}
\]

\[
\varepsilon_y = \varepsilon_z = -\frac{\mu f_x}{E}
\]

- sign! \(0 < \mu < 0.5\)
Calculating Strain

- from Hooke’s law
 \[f = E \cdot \varepsilon \]

- substitute
 \[\frac{P}{A} = E \cdot \frac{\delta}{L} \]

- get \(\delta = \frac{P L}{AE} \)
Orthotropic Materials

• non-isometric
• directional values of E and μ
• ex:
 – plywood
 – laminates
 – polymer composites
Stress Concentrations

• why we use f_{ave}

• increase in stress at changes in geometry
 – sharp notches
 – holes
 – corners

Figure 5.35 Stress trajectories around a hole.
Maximum Stresses

- if we need to know where f_{\max}^θ and f_v^θ happen:

\[
\theta = 0^\circ \rightarrow \cos \theta = 1 \quad f_{\max}^\theta = \frac{P}{A_o}
\]

\[
\theta = 45^\circ \rightarrow \cos \theta = \sin \theta = \sqrt{0.5} \quad f_v^\theta = \frac{f_{\max}^\theta}{2A_o} = \frac{f_{\max}^\theta}{2}
\]
Maximum Stresses

FIG. 2-37 Shear failure along a 45° plane of a wood block loaded in compression

FIG. 2-38 Slip bands (or Lüders’ bands) in a polished steel specimen loaded in tension
Deformation Relationships

- **physical movement**
 - axially (same or zero)
 - rotations from axial changes

\[\delta \text{ relates } \delta \text{ to } P \]

\[\delta = \frac{PL}{AE} \]
Deformations from Temperature

- atomic chemistry reacts to changes in energy
- solid materials
 - can contract with decrease in temperature
 - can expand with increase in temperature
- linear change can be measured per degree
Thermal Deformation

• α - the rate of strain per degree

• UNITS: $^\circ$F / $^\circ$C

• length change: $\delta_T = \alpha(\Delta T)L$

• thermal strain: $\varepsilon_T = \alpha(\Delta T)$

– no stress when movement allowed
Coefficients of Thermal Expansion

<table>
<thead>
<tr>
<th>Material</th>
<th>Coefficients (α) [in./in./°F]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>3.0×10^{-6}</td>
</tr>
<tr>
<td>Glass</td>
<td>4.4×10^{-6}</td>
</tr>
<tr>
<td>Concrete</td>
<td>6.0×10^{-6}</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>6.1×10^{-6}</td>
</tr>
<tr>
<td>Steel</td>
<td>6.5×10^{-6}</td>
</tr>
<tr>
<td>Wrought Iron</td>
<td>6.7×10^{-6}</td>
</tr>
<tr>
<td>Copper</td>
<td>9.3×10^{-6}</td>
</tr>
<tr>
<td>Bronze</td>
<td>10.0×10^{-6}</td>
</tr>
<tr>
<td>Brass</td>
<td>10.4×10^{-6}</td>
</tr>
<tr>
<td>Aluminum</td>
<td>12.8×10^{-6}</td>
</tr>
</tbody>
</table>
Stresses and Thermal Strains

- if thermal movement is restrained stresses are induced

1. bar pushes on supports

2. support pushes back

3. reaction causes internal stress

\[f = \frac{P}{A} = \frac{\delta}{L} E \]
Superposition Method

- can remove a support to make it look determinant
- replace the support with a reaction
- enforce the geometry constraint
Superposition Method

- total length change restrained to zero

constraint: $\delta_p + \delta_T = 0$

$$\delta_p = - \frac{PL}{AE} \quad \delta_T = \alpha(\Delta T)L$$

sub:

$$- \frac{PL}{AE} + \alpha(\Delta T)L = 0$$

$$f = - \frac{P}{A} = -\alpha(\Delta T)E$$
Design of Members

• beyond allowable stress…
• materials aren’t uniform 100% of the time
 – ultimate strength or capacity to failure may be different and some strengths hard to test for

• RISK & UNCERTAINTY

\[f_u = \frac{P_u}{A} \]
Factor of Safety

- accommodate uncertainty with a safety factor:
 \[
 \text{allowable load} = \frac{\text{ultimate load}}{F.S}
 \]

- with linear relation between load and stress:
 \[
 F.S = \frac{\text{ultimate load}}{\text{allowable load}} = \frac{\text{ultimate stress}}{\text{allowable stress}}
 \]
Load and Resistance Factor Design

- loads on structures are
 - not constant
 - can be more influential on failure
 - happen more or less often
 - UNCERTAINTY

\[R_u = \gamma_D R_D + \gamma_L R_L \leq \phi R_n \]

\(\phi \) - resistance factor
\(\gamma \) - load factor for (D)ead & (L)ive load