Wood Beam Design

- National Design Specification
 - National Forest Products Association
 - ASD & LRFD (combined in 2005)
 - adjustment factors \(\times \) tabulated stress = allowable stress
 - adjustment factors terms, \(C \) with subscript
 - i.e., bending:
 \[
 f_b \leq F'_b = F_b \times \text{(product of adjustment factors)}
 \]

Wood Properties

- cell structure and density

Timber

- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives

Timber properties include:
- cell structure and density
- specific gravity
- hardness

Wood properties vary by:
- Wood type
- Moisture content
- Direction of analysis

Wood construction:
materials & beams

- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives

Wood Properties

- cell structure and density

http://www.swst.org/teach/set2/struct1.html

hardwood

softwood
Wood Properties

• moisture
 – exchanges with air easily
 – excessive drying causes warping and shrinkage
 – strength varies some

• temperature
 – steam
 – volatile products
 – combustion

http://www.swst.org/teach/set2/struct1.html

Structural Lumber

• dimension – 2 x’s (nominal)
• beams, posts, timber, planks
• grading
 – select structural
 – no. 1, 2, & 3
• tabular values
 by species
• glu-lam
• plywood

Adjustment Factors

• terms
 – $C_D =$ load duration factor
 – $C_M =$ wet service factor
 • 1.0 dry \leq 19% MC sawn
 • 1.0 dry \leq 16% MC glu-lam
 – $C_F =$ size factor
 • visually graded sawn lumber and round timber
 • > 12” depth
 $C_F = (12 / d)^{1/6} \leq 1.0$

Fig. 9.23 (pg 477)
Adjustment Factors

- **terms**
 - C_{fu} = flat use factor
 - not decking
 - C_i = incising factor
 - increase depth for pressure treatment
 - C_t = temperature factor
 - lose strength at high temperatures

Allowable Stresses

- **design values**
 - F_b: bending stress
 - F_{t}: tensile stress
 - F_v: horizontal shear stress
 - $F_{c,\perp}$: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain)
 - E: modulus of elasticity
 - F_p: bearing stress (parallel to grain)

Load Combinations

- **design loads, take the bigger of**
 - (dead loads)/0.9
 - (dead loads + any possible combination of live loads)/C_D

- **deflection limits**
 - no load factors
 - for stiffer members:
 - Δ_T max from $LL + 0.5(DL)$

- C_r = repetitive member factor
- C_H = shear stress factor
- C_V = volume factor
- C_L = beam stability factor
- C_c = curvature factor for laminated arches
Beam Design Criteria

- **strength design**
 - bending stresses predominate
 - shear stresses occur

- **serviceability**
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding

Beam Deformations

- curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

\[
\frac{1}{R} = \frac{M}{EI}
\]

\[
\text{curvature} = \frac{M(x)}{EI}
\]

\[
\theta = \text{slope} = \int \frac{M(x)}{EI} \, dx
\]

\[
\Delta = \text{deflection} = \int \int \frac{M(x)}{EI} \, dx
\]

Deflection Limits

- based on service condition, severity

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y

Design Procedure

1. Know F_{all} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{req'}$ ($f_b \leq F_b$)

4. Determine section size

$$ S = \frac{bh^2}{6} $$

Beam Design

4*. Include self weight for M_{max}

- and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
Beam Design

6. Evaluate shear stresses - horizontal
 \(f_v \leq F_v \)
 \[
 f_{v,\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}}
 \]
 - rectangles and W's
 - general
 \[
 f_{v,\text{max}} = \frac{VQ}{I_b}
 \]

Beam Design

7. Provide adequate bearing area at supports
 \[
 f_p = \frac{P}{A} \leq F_p
 \]

Beam Design

8. Evaluate torsion
 \(f_v \leq F_v \)
 - circular cross section
 \[
 f_v = \frac{T \rho}{J}
 \]
 - rectangular
 \[
 f_v = \frac{T}{c_1 ab^2}
 \]

Beam Design

9. Evaluate deflections
 \[
 \Delta_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}}
 \]

<table>
<thead>
<tr>
<th>a/b</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.396</td>
<td>0.496</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.561</td>
</tr>
<tr>
<td>1.5</td>
<td>0.251</td>
<td>0.958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.329</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.349</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.361</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.391</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.212</td>
</tr>
<tr>
<td>\infty</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Decking

- across beams or joists
- floors: 16 in. span common
 - ¾ in. tongue-in-groove plywood
 - 5/8 in. particle board over ½ in. plywood
 - hardwood surfacing
- roofs: 24 in. span common
 - ½ in. plywood

Joists & Rafters

- allowable load tables (w)
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings

Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, decking, shear walls, diaphragms

Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms
Engineered Wood

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)
 - (LVL)
- wood fibers
 - Hardieboard: cement & wood

Timber Elements

- stressed-skin elements
 - modular built-up “plates”
 - typically used for floors or roofs

Timber Elements

- built-up box sections
 - built-up beams
 - usually site-fabricated
 - bigger spans

Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs
Timber Elements

- folded plates and arch panels
 - usually of plywood

Approximate Depths

![Approximate Depths Graph]

Timber Elements

- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs