Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations

Effect of Length (revisited)

- long & slender
- short & stubby

Critical Stresses (revisited)

- when a column gets stubby, crushing will limit the load
- real world has loads with eccentricity
Bracing (revisited)

- bracing affects shape of buckle in one direction
- both should be checked!

Allowable Wood Stress

$$F'_c = F_c \left(C_D \right) \left(C_M \right) \left(C_t \right) \left(C_F \right) \left(C_p \right)$$

- where:
 - F_c = compressive strength parallel to grain
 - C_D = load duration factor
 - C_M = wet service factor (1.0 dry)
 - C_t = temperature factor
 - C_F = size factor
 - C_p = column stability factor
 (Table 10.3)

Wood Columns

- slenderness ratio = L/d_{min}
 - d_1 = smallest dimension
 - $l/e/d \leq 50$ (max)
 - \[f_c = \frac{P}{A} \leq F'_c \]
 - where F'_c is the allowable compressive strength parallel to the grain
 - bracing common
 - posts, round, built-up

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - >10 years

- stability, C_p
 - combination curve - tables
 - \[F'_c = F_c C_p = (F_c C_D) C_p \]
Procedure for Analysis

1. calculate L/d_{min}
 - KL/d each axis, choose largest
2. obtain F'_c
 - compute $F'_{CE} = \frac{0.822E'_{\text{min}}}{l_e/d} \left(\frac{E_c}{E} \right)$
 - $(K_{CE} = 0.3$ sawn$)$
 - $(K_{CE} = 0.418$ glu-lam$)$
 - $E'_{\text{min}} = E_{\text{min}}(C_M)(C_I)(C_P)(C_I)$
3. compute $F'_c \approx F_C D$
4. calculate F_{CE}/F'_c and get C_p (Table 14)
5. calculate $F'_{CE} = F'_c C_p$

Procedure for Analysis (cont’d)

6. compute $P_{\text{allowable}} = F'_{CE} A$
 - or find $f_{\text{actual}} = P/A$
7. is $P \leq P_{\text{allowable}}$? (or $f_{\text{actual}} \leq F'_{CE}$?)
 - yes: OK
 - no: overstressed & no good

Column Charts – Not in Appendix
Procedure for Design

1. guess a size (pick a section)
2. calculate \(L_e/d_{\text{min}} \)
 - \(\frac{KL}{d} \) each axis, choose largest
3. obtain \(F_c' \)
 - compute \(F_{cE} = \frac{0.822 E'_{\text{min}}}{(\frac{L_e}{d})^2} = \frac{K_c E}{(\frac{L_e}{d})^2} \)
 \(K_c = 0.3 \) sawn
 \(K_c = 0.418 \) glu-lam
 \(E'_{\text{min}} = E_{\text{min}} C_M C_I C_T \)
4. compute \(F_c^* \approx F_c C_D \)
5. calculate \(F_{cE}/F_c^* \) and get \(C_p \) (Table 14)

Procedure for Design (cont’d)

6. compute \(F_c' = F_c^* C_p \)
7. compute \(P_{\text{allowable}} = F_c' A \)
 - or find \(f_{\text{actual}} = P/A \)
8. is \(P \leq P_{\text{allowable}} \)? (or \(f_{\text{actual}} \leq F_c' \)?)
 - yes: OK
 - no: pick a bigger section and go back to step 2.

Timber Construction by Code

- light-frame
 - light loads
 - 2x’s
 - floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 - normal spans of 20-25 ft or 6-7.5 m
 - plywood spans between joists
 - stud or load-bearing masonry walls
 - limited to around 3 stories – fire safety

Design of Columns with Bending

- satisfy
 - strength
 - stability
- pick
 - section
Design

- Wood

\[
\left[\frac{f_c}{F'_{cx}} \right]^2 + \frac{f_{bx}}{F'_{bx} \left(1 - \frac{f_c}{F_{cx}} \right)} \leq 1.0
\]

[] term – magnification factor for P-\(\Delta\)

\(F'_{bx}\) – allowable bending strength

Design Steps Knowing Loads

1. assume limiting stress
 - buckling, axial stress, combined stress
2. solve for \(r, A\) or \(S\)
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Laminated Timber Arches

- two & three hinged arches
- bent to wide range of curves
- bending and compression
- residual stress from laminating, \(C_c\)

Laminated Arch Design

- radius of curvature, \(R\), limited by lam thickness, \(t\)
 - \(R = 100t\) – southern pine & hardwoods
 - \(R = 125t\) – softwood
- \(r = \) radius to inside face of laminations
- \(C_C = 1 - 2000 \left(\frac{t}{r} \right)^2\)
- \(F'_b = F_b(C_{F-C_c})\)