ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS

SUMMER 2018

lecture fourteen

wood construction: connections

Architectural Structures

F2009abn

Wood Connectors

- adhesives
 - used in a controlled environment
 - can be used with nails
- mechanical
 - bolts
 - lag bolts or lag screws
 - nails
 - split ring and shear plate connectors

wood Connections 3 ber rivets

Architectural Structures

F2008abn

Connectors

- joining
 - lapping
 - interlocking
 - butting
- mechanical
 - "third-elements"

 transfer load at a point, line or surface - generally more than a point due to stresses

Wood Connections 2 Lecture 17

Foundations Structures ARCH 331

Wood Connections

ARCH 331

Bolted Joints

 connected members in tension cause shear stress

 connected members in compression cause bearing stress

Bearing stress on plate.

Wood Connections 5 Lecture 17 Foundations Structures ARCH 331 F2008abn

Effective Net Area

- likely path to "rip" across
- bolts divide transferred force too

Wood Connections 7 Lecture 17 Foundations Structures ARCH 331 F2008abn

Tension Members

members with <u>holes</u> have reduced area

increased tension stress

• A_e is effective net area $f_t = \frac{P}{A_e} \left(or \frac{I}{A_e} \right)$

Wood Connections 6 Lecture 17 Foundations Structures ARCH 331 F2008abn

Single Shear

seen when 2 members are connected

Double Shear

seen when 3 members are connected

$$\Sigma F = 0 = -P + 2(\frac{P}{2})$$

$$f = \frac{P}{P} = \frac{P/2}{12} = \frac{P/2}{12}$$

Free-body diagram of middle section of the bolt in shear Figure 5.12 A bolted connection in double shear.

Wood Connections 9 Lecture 17 Foundations Structures ARCH 331 F2008abn

Bolted Joints

twisting

- tear out
 - shear strength
 - end distance & spacing

gure 1.—Higher connection capacities can be achieved wit creased fastener spacings.

F2008ahn

Taylor & Line 2002

Bearing Stress

- compression & contact
- stress limited by species & grain direction to load

projected area

 $f_p = \frac{P}{A_{projected}} = \frac{P}{td}$

Wood Connections 10 Lecture 17 Foundations Structures ARCH 331

Nailed Joints

- tension stress (pullout)
- shear stress nails presumed to share load by distance from centroid of nail pattern

Wood Connections 12

Foundations Structures ARCH 331 F2008abn

Nailed Joints

- · sized by pennyweight units / length
- embedment length

Side Member

Thickness,

 $t_{\rm r}$ (in.)

• dense wood, more capacity

Length,

L (in.)

TABLE 7.1 Lateral Load Capacity of Common Wire Nails (lb/nail)

	Nail Diameter, D (in.)	Pennyweight	Load per Nail for Douglas Fir-Larch G = 0.50, Z (lb)
nŀ	pers		
	0.113	6d	48
	0.131	8d	63
	0.148	10d	76

	2	0.113	6d	48
3/8	21/2	0.131	8d	63
	3	0.148	10d	76
	2	0.113	6d	50
1/2	21/2	0.131	8d	65
72	3	0.148	10d	78
	31/2	0.162	16d	92

Wood Connections 13 Lecture 17 Foundations Structures ARCH 331 F2008abn

*NDS

Vertical Connectors

· isolate an area with vertical interfaces

$$nF_{connector} \geq \frac{VQ_{connected\ area}}{I} \cdot p$$

Wood Connections 15 Lecture 17 Foundations Structures ARCH 331 F2008abn

Connectors Resisting Beam Shear

plates with

- nails
- rivets
- bolts

splices

 V from beam load related to V_{longitudinal}

$$rac{V_{longitudinal}}{p} = rac{VQ}{I}$$
 $\geq rac{VQ_{connected\ area}}{I} \cdot p$

Wood Connections 14 Lecture 17 Foundations Structures ARCH 331 F2008abn