Reinforced Concrete Design

- economical & common
- resist lateral loads

Concrete Spans

Lecture 22
Architectural Structures
ARCH 331
DR. ANNE NICHOLS
SUMMER 2016

concrete construction:
flat spanning systems, columns & frames

Reinforced Concrete Design

- flat plate
 - 5”-10” thick
 - simple formwork
 - lower story heights

- flat slab
 - same as plate
 - 2 ¼”-8” drop panels

Reinforced Concrete Design

- beam supported
 - slab depth ~ L/20
 - 8”-60” deep

- one-way joists
 - 3”-5” slab
 - 8”-20” stems
 - 5”-7” webs

http://nisee.berkeley.edu/godden
Reinforced Concrete Design

- two-way joist
 - “waffle slab”
 - 3”-5” slab
 - 8”-24” stems
 - 6”-8” webs
- beam supported slab
 - 5”-10” slabs
 - taller story heights

Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - \(w_u \) from combos
 - uniform loads with \(L/D \leq 3 \)
 - \(\ell_n \) is clear span (+M) or average of adjacent clear spans (-M)
Reinforced Concrete Design

- two-way slabs - Direct Design Method
 - 3 or more spans each way
 - uniform loads with L/D ≤ 3
 - rectangular panels with long/short span ≤ 2
 - successive spans can’t differ > longer/3
 - column offset no more than 10% span

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

Reinforced Concrete Design

<table>
<thead>
<tr>
<th>Span ratio</th>
<th>Slab Moments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Column Side Beam: Slab</td>
<td>$0.10 M_p$</td>
<td>$0.37 M_p$</td>
<td>$0.70 M_p$</td>
<td>$0.27 M_p$</td>
</tr>
<tr>
<td>0.5</td>
<td>Slab</td>
<td>$0.02 M_p$</td>
<td>$0.06 M_p$</td>
<td>$0.07 M_p$</td>
<td>$0.03 M_p$</td>
</tr>
<tr>
<td>1.0</td>
<td>Column Side Beam: Slab</td>
<td>$0.10 M_p$</td>
<td>$0.37 M_p$</td>
<td>$0.40 M_p$</td>
<td>$0.22 M_p$</td>
</tr>
<tr>
<td>1.0</td>
<td>Slab</td>
<td>$0.02 M_p$</td>
<td>$0.06 M_p$</td>
<td>$0.08 M_p$</td>
<td>$0.04 M_p$</td>
</tr>
<tr>
<td>2.0</td>
<td>Column Side Beam: Slab</td>
<td>$0.06 M_p$</td>
<td>$0.37 M_p$</td>
<td>$0.37 M_p$</td>
<td>$0.14 M_p$</td>
</tr>
<tr>
<td>2.0</td>
<td>Slab</td>
<td>$0.06 M_p$</td>
<td>$0.31 M_p$</td>
<td>$0.38 M_p$</td>
<td>$0.19 M_p$</td>
</tr>
</tbody>
</table>

Notes:
1. Beams and slab safety stiffness criteria: $\alpha_{ust} \geq 1.0$ and $h_s \geq 2.5$.
2. Interpolate between values shown for different h_s/t_i ratios.
3. All negative moments are at face of support.
4. Concentrated loads applied directly to beams must be accounted for separately.

Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel

Concrete Spans 9
Lecture 25
Architectural Structures
ARCH 331
F2008abn

Concrete Spans 10
Lecture 25
Architectural Structures
ARCH 331
F2008abn

Concrete Spans 11
Lecture 25
Architectural Structures
ARCH 331
F2008abn

Concrete Spans 12
Lecture 25
Architectural Structures
ARCH 331
F2008abn
Shear in Concrete

• at columns with waffle slabs

Openings in Slabs

• careful placement of holes
• shear strength reduced
• bending & deflection can increase

General Beam Design

• f'_c & f_y needed
• usually size just b & h
 – even inches typical (forms)
 – similar joist to beam depth
 – $b:h$ of 1:1.5-1:2.5
 – b_w & b_f for T
 – to fit reinforcement + stirrups
• slab design, t
 – deflection control & shear

General Beam Design (cont’d)

• custom design:
 – longitudinal steel
 – shear reinforcement
 – detailing
Space “Frame” Behavior

- handle uniformly distributed loads well
- bending moment
 - tension & compression “couple” with depth
 - member sizes can vary, but difficult

Folded Plates

- increased bending stiffness with folding
- lateral buckling avoided

Space “Frame” Behavior

- shear at columns
- support conditions still important
 - point supports not optimal
- fabrication/construction can dominate design

Folded Plates

- common for roofs
- edges need stiffening

http://nisee.berkeley.edu/godden
Folded Plates

- State Farm Center (Assembly Hall), University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Concrete in Compression

- crushing
- vertical cracking
 - tension
- diagonal cracking
 - shear
- f'_c

Columns Reinforcement

- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (4 bars minimum)

Slenderness

- effective length in monolithic with respect to stiffness of joint: Ψ & k
- not slender when

$$\frac{kL_u}{r} \leq 22$$

not braced
Effective Length (revisited)

- relative rotation

\[\Psi = \frac{\sum EI}{l_c} \]

Column Behavior

Columns with Bending

- eccentric loads can cause moments
- moments can change shape and induce more deflection

(P-\(\Delta\))

Column Design

- \(\phi_c = 0.65\) for ties, \(\phi_c = 0.75\) for spirals
- \(P_o\) – no bending
- \(P_u \leq \phi_c P_n\)
 - ties: \(P_n = 0.8P_o\)
 - spiral: \(P_n = 0.85P_o\)
- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress

\[P = 0.85 f'_c (A_g - A_{st}) + f_y A_{st} \]
Columns with Bending

- for ultimate strength behavior, ultimate strains can’t be exceeded
 - concrete 0.003
 - steel \(\frac{f_y}{E_s} \)
- \(P \) reduces with \(M \)

Design Methods

- calculation intensive
 - handbook charts
 - computer programs

Columns with Bending

- need to consider combined stresses
- linear strain
- steel stress at or below \(f_y \)
- plot interaction diagram

Design Considerations

- bending at both ends
 - \(P-\Delta \) maximum
- biaxial bending
- walls
 - unit wide columns
 - “deep” beam shear
- detailing
 - shorter development lengths
 - dowels to footings