Foundations 1
Lecture 23
Architectural Structures
ARCH 331
F2008abn

Foundations 2
Lecture 27
Architectural Structures
ARCH 331
F2008abn

Structural vs. Foundation Design

• structural design
 – choice of materials
 – choice of framing system
 – uniform materials and quality assurance
 – design largely independent of geology, climate, etc.

Structural vs. Foundation Design

• foundation design
 – cannot specify site materials
 – site is usually predetermined
 – framing/structure predetermined
 – site geology influences foundation choice
 – no site the same
 – no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, \(q_u \)
 - allowable bearing capacity, \(q_a = \frac{q_u}{S.F.} \)

Bearing Failure

- shear
Lateral Earth Pressure
• passive vs. active

![Diagram of lateral earth pressure with active and passive pressures]

Foundation Materials
• concrete, plain or reinforced
 – shear
 – bearing capacity
 – bending
 – embedment length, development length
• other materials (piles)
 – steel
 – wood
 – composite

Basic Foundation Requirements
• safe against instability or collapse
• no excessive/damaging settlements
• consider environment
 – frost action
 – shrinkage/swelling
 – adjacent structure, property lines
 – ground water
 – underground defects
 – earthquake
• economics

Generalized Design Steps
• calculate loads
• characterize soil
• determine footing location and depth
• evaluate soil bearing capacity
• determine footing size (unfactored loads)
• calculate contact pressure and check stability
• estimate settlements
• design footing structure* (factored loads)
Types of Foundations

- spread footings
- wall footings
- eccentric footings
- combined footings
- unsymmetrical footings
- strap footings

Shallow Footings

- spread footing
 - a square or rectangular footing supporting a single column
 - reduces stress from load to size the ground can withstand

Actual vs. Design Soil Pressure

- stress distribution is a function of
 - footing rigidity
 - soil behavior

- linear stress distribution assumed
Proportioning Footings

- net allowable soil pressure, q_{net}
 - $q_{net} = q_{allowable} - h_f(\gamma_c - \gamma_s)$
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden
- design requirement with total unfactored load:
 $$\frac{P}{A} \leq q_{net}$$

Concrete Spread Footings

- failure modes
 - shear
 - bending

Concrete Spread Footings

- plain or reinforced
- ACI specifications
- $P_u =$ combination of factored D, L, W
- ultimate strength
 - $V_u \leq \phi V_c: \phi = 0.75$ for shear
 - plain concrete has shear strength
 - $M_u \leq \phi M_n: \phi = 0.9$ for flexure
Over and Under-reinforcement

- reinforcement ratio for bending
 \[\rho = \frac{A_s}{bd} \]
- use as a design estimate to find \(A_s, b, d \)
- max \(\rho \) from \(\varepsilon_{\text{steel}} \geq 0.004 \)
- minimum for slabs & footings of uniform thickness
 \[\frac{A_s}{bh} = 0.002 \text{ grade 40/50 bars} \]
 \[= 0.0018 \text{ grade 60 bars} \]

Reinforcement Length

- need length, \(\ell_d \)
 - bond
 - development of yield strength

Column Connection

- bearing of column on footing
 \[P_u \leq \phi P_n = \phi (0.85 f'_c A_1) \]
 \[\phi = 0.65 \text{ for bearing} \]
 - confined: increase \(x \)
 \[\frac{A_2}{A_1} \leq 2 \]
- dowel reinforcement
 - if \(P_u > P_b \), need compression reinforcement
 - min of 4 bars and 0.005\(A_g \)

Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads
Eccentrically Loaded Footings

- footings subject to moments

\[P \]

by statics:

\[M = P e \]

- soil pressure resultant force may not coincide with the centroid of the footing

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing

- for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Kern Limit

- boundary of e for no tensile stress

- triangular stress block with \(p_{\text{max}} \)

\[\text{volume} = \frac{wp_x}{2} = N \]

\[p_{\text{max}} = \frac{2N}{wx} \]

Guidelines

- want resultant of load from pressure inside the middle third of base (kern)

\[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5 \]

- pressure under toe (maximum) \(\leq q_a \)

- shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line

- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types

- rectangular
- trapezoid
- strap or cantilever
 - prevents overturning of exterior column
- raft/mat
 - more than two columns over an extended area

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[
q_{\text{max}} \leq q_a
\]

\[
R = P_1 + P_2
\]

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key
Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 - (adequate drainage)

Retaining Walls

- procedure
 - proportion and check stability with working loads for bearing, overturning and sliding
 - design structure with factored loads

\[
SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2
\]

\[
SF = \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2
\]

Retaining Wall Proportioning

- estimate size
 - footing size, \(B \approx \frac{2}{5} - \frac{2}{3} \) wall height \((H)\)
 - footing thickness \(\approx \frac{1}{12} - \frac{1}{8} \) footing size \((B)\)
 - base of stem \(\approx \frac{1}{10} - \frac{1}{12} \) wall height \((H+h_f)\)
 - top of stem \(\geq 12'' \)

Retaining Walls Forces

- design like cantilever beam
 - \(V_u \) & \(M_u \) for reinforced concrete
 - \(V_u \leq \phi V_c : \phi = 0.75 \) for shear
 - \(M_u \leq \phi M_n : \phi = 0.9 \) for flexure
Retaining Wall Types

• “gravity” wall
 – usually unreinforced
 – economical & simple

• cantilever retaining wall
 – common

Deep Foundations

• usage
 – when spread footings, mats won’t work
 – when they are required to transfer the structural loads to good bearing material
 – to resist uplift or overturning
 – to compact soil
 – to control settlements of spread or mat foundations

Retaining Wall Types

• counterfort wall
 – very tall walls (> 20 - 25 ft)

• buttress wall

• bridge abutment

• basement frame wall (large basement areas)

Deep Foundation Types

– piles - usually driven, 6”-8” ø, 5’ +
 – piers
 – caissons
 – drilled shafts
 – bored piles
 – pressure injected piles
Deep Foundation Types

Deep Foundations
• classification
 – by material
 – by shape
 – by function (structural, compaction...)
• pile placement methods
 – driving with pile hammer (noise & vibration)
 – driving with vibration (quieter)
 – jacking
 – drilling hole & filling with pile or concrete

Piles Classified By Material
• timber
 – use for temporary construction
 – to densify loose sands
 – embankments
 – fenders, dolphins (marine)
• concrete
 – precast: ordinary reinforcement or prestressed
 – designed for axial capacity and bending with handling

Piles Classified By Material
• steel
 – rolled HP shapes or pipes
 – pipes may be filled with concrete
 – HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

- **end bearing pile (point bearing)**

 ![Diagram of end bearing pile]

 \[P_a = A_p \cdot f_a \]

 for use in soft or loose materials over a dense base

- **friction piles (floating)**

 ![Diagram of friction piles]

 \[R_s = f(adhesion) \]

 \[R_p \approx 0 \]

 common in both clay & sand

 tapered: sand & silt

- **combination friction and end bearing**

 ![Diagram of combination friction and end bearing]

 \[P \]

 uplift/tension piles

 structures that float, towers

- **batter piles**

 ![Diagram of batter piles]

 angled, cost more, resist large horizontal loads

 \[P \]

 1:12 to 1:3 or 1:4

 angled, cost more, resist large horizontal loads

- **fender piles, dolphins, pile clusters**

 large # of piles in a small area

- **compaction piles**

 used to densify loose sands

- **drilled piers**

 eliminate need for pile caps

 designed for bearing capacity (not slender)

Pile Caps and Grade Beams

- **like multiple column footing**

 ![Diagram of pile caps and grade beams]

- **more shear areas to consider**