ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

DR. ANNE NICHOLS SUMMER 2018

lecture

other beams & pinned frames

Continental train platform, Grimshaw 1993

Lecture 9

ARCH 331

F2009abn

Pinned Frames

- structures with at least one <u>3 force body</u>
- connected with pins
- reactions are equal and opposite

Pinned Frames 2 Lecture 10

Foundations Structures ARCH 331

F2008ahn

Rigid Frames

- <u>rigid</u> frames have no pins
- frame is all one body
- typically statically indeterminate
- types
 - portal
 - gable

Rigid Frames with PINS

- · frame pieces with connecting pins
- not necessarily symmetrical

Pinned Frames 4 Lecture 10

Foundations Structures

F2008abn

Internal Pin Connections

- statically determinant
 - 3 equations per body
 - 2 reactions per pin + support forces

Arches

- primarily sees compression
- a brick "likes an arch"

Arches

- ancient
- traditional shape to span long distances

Packhorse Bridge, UK

n Aquaducts

F2008abn

Arches

Pinned Frames 8

- behavior
 - thrust related to height to width

(e) (f)

Foundations Structures ARCH 331 F2008abn

Three-Hinged Arch

- statically determinant
 - 2 bodies, 6 equilibrium equations
 - 4 support, 2 pin reactions (= 6)

Procedure

- · solve for all support forces you can
- draw a FBD of each member
 - pins are integral with member
 - pins with loads should belong to 3+ force bodies
 - pin forces are equal and opposite on connecting bodies
 - identify 2 force bodies vs. 3+ force bodies

F2008abn

- use all equilibrium equations

Compound Beams

- statically determinant when
 - 3 equilibrium equations per link =>
 - total of support & pin reactions (properly constrained)
- · zero moment at pins

ARCH 331

Rigid Body Types

two force bodies

Lecture 10

Lecture 10

- forces in line, equal and opposite
- three force bodies
 - concurrent or parallel forces

ARCH 331

Pinned Frames 11 Foundations Structures
Lecture 10 ARCH 331

3

Continuous Beams

- statically indeterminate
- reduced moments than simple beam

Continuous Beams

unload end span

Continuous Beams

- loading pattern affects
 - moments & deflection

Continuous Beams

unload middle span

Analysis Methods

- Approximate Methods
 - location of inflection points
- Force Method
 - forces are unknowns
- · Displacement Method
 - displacements are unknowns

Two Span Beams & Charts

equal spans & symmetrical loading

Foundations Structures

• middle support as flat slope

Pinned Frames 18

Lecture 10

Pinned Frames 17 Foundations Structures F2008abn
Lecture 10 ARCH 331