ARCHITECTURAL **S**TRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331

DR. ANNE NICHOLS

FALL 2018

twenty five

http:// nisee.berkeley.edu/godden

concrete construction: flat spanning systems

Concrete Spans 1 Lecture 25 Architectural Structure

F2009abn

Reinforced Concrete Design

- flat plate
 - 5"-10" thick
 - simple formwork
 - lower story heights

- flat slab
 - same as plate
 - $-2\frac{1}{4}$ "-8" drop panels

Reinforced Concrete Design

- economical & common
- resist lateral loads

Reinforced Concrete Design

- beam supported
 - slab depth ~ L/20
 - -8"-60" deep

- 3"-5" slab
- 8"-20" stems
- 5"-7" webs

The Architect's Studio Companion

Concrete Spans 4 Lecture 25 Foundations Structures

Reinforced Concrete Design

- two-way joist
 - "waffle slab"
 - 3"-5" slab
 - 8"-24" stems
 - 6"-8" webs
- beam supported slab
 - 5"-10" slabs
 - taller story heights

Concrete Spans 5 Lecture 25 Foundations Structures ARCH 331 F2008abn

Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - w_u from combos
- S1.2 In In Prismatic Member

 Two or More Spans

 Figure 2-2 Conditions for Analysis by Coefficients (ACI 8.3.3)
- uniform loads with L/D ≤ 3
- $-\ell_n$ is clear span (+M) or average of adjacent clear spans (-M)

Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Concrete Spans 6 Lecture 25 Foundations Structures ARCH 331 F2008abr

Reinforced Concrete Design

Figure 2-4 Negative Moments—Beams and Slabs

Concrete Spans 7 Lecture 25 Foundations Structures ARCH 331 F2008abn

Concrete Spans 8

Foundations Structures ARCH 331

Reinforced Concrete Design

- two-way slabs Direct Design Method
 - 3 or more spans each way
 - uniform loads with $L/D \le 2$
 - rectangular panels with long/short span ≤ 2
 - successive spans can't differ > longer/3
 - column offset no more than 10% span

Concrete Spans 9

Architectural Structures ARCH 331

F2008abn

Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

Concrete Spans 11 Lecture 25

Foundations Structures ARCH 331

F2008abn

Reinforced Concrete Design

Table 4-6 Two-Way Beam-Supported Slab

	1	End Span			Interior Span	
Span		1 Exterior Negative	2 Positive	3 First Interior Negative	4 Positive	5 Interior Negative
ratio %2/%।	Total Moment	0.16 M _O	0.57 M _o	0.70 M _O	0.35 M _O	0.65 M _O
0.5	Column Strip Beam Slab	0.12 M _O 0.02 M _O	0.43 M _o 0.08 M _b	0.54 M _o 0.09 M _o	0.27 M _o 0.05 M _o	0.50 M _O 0.09 M _O
	Middle Strip	0.02 M _O	0.06 M _O	0.07 M _O	0.03 M _O	0.06 M _O
1.0	Column Strip Beam Slab	0.10 M _O 0.02 M _O	0.37 M _O 0.06 M _O	0.45 M _O 0.08 M _O	0.22 M _o 0.04 M _o	0.42 M _O 0.07 M _O
	Middle Strip	0.04 M _O	0.14 M ₀	0.17 M _O	0.09 M _O	0.16 M _O
2.0	Column Strip Beam Slab	0.06 M _o 0.01 M _o	0.22 M _O 0.04 M _O	0.27 M _o 0.05 M _o	0.14 M _o 0.02 M _o	0.25 M _O 0.04 M _O
	Middle Strip	0.01 M _O	0.31 M _O	0.38 M _O	0.19 M ₀	0.36 M _O

- Beams and slab satisfy stiffness criteria: α₁ℓ₂/ℓ₁ ≥ 1.0 and βt ≥ 2.5.
- (2) Interpolate between values shown for different &/t1 ratios.
- (3) All negative moments are at face of support.
- (4) Concentrated loads applied directly to beams must be accounted for separately

Concrete Spans 10 Lecture 25

Foundations Structures ARCH 331

F2008abn

Column

Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel

Concrete Spans 12 Lecture 25

Foundations Structures

Shear in Concrete

at columns with waffle slabs

General Beam Design

- f'_c & f_v needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - b:h of 1:1.5-1:2.5
 - $-b_w \& b_f$ for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear

Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase

Concrete Spans 14 Lecture 25

Foundations Structures ARCH 331

F2008abn

General Beam Design (cont'd)

- custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing

Concrete Spans 15 Foundations Structures ARCH 331

Concrete Spans 16 Lecture 25

Foundations Structures ARCH 331

Space "Frame" Behavior

- · handle uniformly distributed loads well
- bending moment
 - tension & compression "couple" with depth
 - member sizes can vary, but difficult

Concrete Spans 17 Lecture 25 Foundations Structures ARCH 331 F2008abn

Space "Frame" Behavior

- shear at columns
- support conditions still important
 - point supports not optimal
- fabrication/construction can dominate design

Folded Plates

· increased bending stiffness with folding

Concrete Spans 19 Lecture 25 Foundations Structures ARCH 331 F2008abn

Folded Plates

common for roofs

 edges need stiffening

Concrete Spans 20 Lecture 25 Foundations Structures ARCH 331

Folded Plates

- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Concrete Spans 21 Foundations Structures F2008abn Lecture 25 ARCH 331