Embodied Energy in Buildings: Need for a Measurement Protocol

Manish K. Dixit¹, Jose L. Fernández – Solís², Sarel Lavy, Charles H. Culp

¹Corresponding author. Tel.: 979 204 1228, Email: mandix72@neo.tamu.edu
²Corresponding author. Tel.: 979 458 1058, Email: jsolis@archmail.tamu.edu
¹, ²College of Architecture, Texas A&M University, 3137 TAMU
College Station, Texas 77843-3137, United States of America

Abstract

Buildings consume vast amounts of energy during the life cycle stages of construction, use and demolition. Total life cycle energy use in a building consists of two primary components: embodied and operational energy. Embodied energy is expended in the processes of building material production (mining and manufacture), on-site delivery, construction and assembly on-site, renovation and final demolition. Operational energy is consumed in operating the buildings. Recent and past studies have revealed the growing significance of embodied energy inherent in buildings and have demonstrated its relationship to carbon emissions.

Current interpretations of embodied energy are quite unclear and vary greatly, and embodied energy databases suffer from problems of variation and incomparability. Parameters differ and cause significant variation in reported embodied energy figures. Typically, research studies have performed either energy analysis or Life Cycle Assessment to measure the energy embodied in a building or building material. These studies either followed international LCA standards or did not mention compliance with any standard. They point out that current LCA standards fail to provide complete guidance and do not address some important issues. Furthermore, the literature recommends developing a set of standards that could streamline the embodied energy calculation process.

This paper discusses parameters causing problems in embodied energy data and identifies unresolved issues in current LCA standards. We also recommend a possible approach to first derive guidelines that later could be developed into a globally accepted protocol.

Key words: Embodied energy measurement, Embodied energy parameters, Life Cycle Assessment, LCA standards, System boundary.
1. Introduction

Buildings, building materials and components consume nearly 40 percent of global energy annually in their life cycle stages, such as production and procurement of building materials, construction, use and demolition [1, 2]. The total life cycle energy of a building constitutes embodied as well as operational energy. Embodied energy is the total amount of energy consumed during the production, use (renovation and replacement) and demolition phase, whereas operational energy is the energy required to operate the building in processes, such as space conditioning, lighting and operating other building appliances [1, 3]. Compared to embodied energy, operational energy constitutes a relatively larger proportion of a building’s total life cycle energy [4]. However, recent research has emphasized the significance of embodied energy and has acknowledged its relative proportion of total energy, which is growing with the emergence of more energy efficient buildings [2, 5, 6, 7]. Furthermore, the relative proportions of embodied and operational energy depend on factors, such as location, climate and fuel sources used [8]. Rosello-Batle et al. [9] and Black et al. [10] have pointed out a relationship between energy use in buildings and greenhouse gas emissions, thus underscoring the environmental significance of embodied energy.

Current embodied energy (EE) data and databases exhibit inaccuracy and variability because of inconsistent methodologies that are used to determine the embodied energy of building materials [11]. This leaves the industry with published embodied energy values that are not comparable. Parameters, such as system boundaries, primary or delivered energy and feedstock energy, define the input variables that are included in embodied energy calculations. Other parameters, such as age and source of data, data representativeness (temporal, spatial and technological), and methods of measurement, affect data quality [11]. These parameters differ in current databases and influence the process of decision-making in the construction industry [11].

Global comparability and reliability are vital data qualities [12-20] for embodied energy research, in part because of the increasing significance of embodied energy in the total life cycle of a building. While a preference for low energy intensive building material could result in large savings in energy consumption in buildings [21-24], a high embodied energy material may also reduce a building’s operational energy consumption. For an accurate comparison and informed decision, the embodied energy data of two materials or components should be measured on the basis of similar parameters. Furthermore, for successful implementation of environmental practices, such as eco-labeling, which informs the customers about the environmental characteristics of a product, it is vital that embodied energy data are accurate and consistent [13-15, 25].

Although several methods exist to compute the energy embedded in a building or building material [3, 26] these methods produce differing results. Most current databases of embodied energy include data that are derived using guidelines set forth by the International Standardization Organization (ISO) for Life Cycle Assessment (LCA). Most research studies performed either energy analysis or LCA to calculate embodied and operational energy in the whole life cycle of a building. Studies [17, 27, 28, 29] that performed LCA mention either using ISO LCA standards or none. However, studies [30, 31, 32] that are skeptical about using LCA for assessing buildings in environmental
impact terms exist. Literature suggests that development of a set of standards or protocol could minimize problems of variation in energy data and could introduce accuracy and completeness to the embodied energy figures. ISO LCA standards do not provide complete guidance to the process of LCA. Moreover, some issues, such as system boundary definition and data quality, remain unresolved [33, 34].

This paper performs a review of literature in the realm of embodied energy and Life Cycle Assessment (LCA) and provides a survey of existing international LCA standards. We identify parameters causing variations in embodied energy data, and determine unresolved issues in existing international LCA standards. Furthermore, we also recommend an approach to establish an embodied energy measurement protocol. Both the LCA and embodied energy analysis literature are utilized, as nearly all of the LCA studies cited in this paper actually involve embodied energy analysis.

2. Embodied Energy: Definition and Interpretation

Buildings are constructed with a variety of building materials, each of which consumes energy throughout its stages of manufacture, use, deconstruction and disposal. Similarly, each building consumes energy during its life cycle in stages, such as raw material extraction, transport, manufacture, assembly, installation as well as its disassembly, demolition and disposal. Energy is expended in various construction processes of a building during the preconstruction phase. Post construction phases, such as renovation and refurbishment, and final demolition and disposal also consume energy. The energy consumed in these life cycle stages of a building is collectively interpreted as embodied energy. According to Miller [35], the term “embodied energy” is subject to numerous interpretations rendered by different authors and its published measurements are found to be quite unclear. Table 1 presents embodied energy definitions rendered by various research studies.

Hegner [4] presents an interesting explanation of embodied energy, citing Kasser and Poll, according to whom, only energy that is available in a limited amount should be considered embodied energy. Here, the author relates the phenomenon of embodied energy to greenhouse gas emissions, as a major fraction of primary energy that is available in a limited amount comes from fossil fuel. Furthermore, it is stated [4] that research studies provide their own definitions, which differ from other comparable studies. Much like Hegner [4], Upton et al. [44] define embodied energy as total embodied energy minus the renewable fraction of total energy. Are these studies indicating that only non-renewable energy needs to be accounted for in the embodied energy calculation? Clearly, embodied energy definitions represent differences of opinion about the system boundaries to be adopted and type of energy to be included in embodied energy analyses [4, 31, 45].

2.1 Embodied Energy Model for a Building

The total life cycle energy of a building includes both embodied and operational energy [1, 3):

1. Embodied energy (EE): Energy sequestered in buildings and building materials during all processes of
production, on-site construction, and final demolition and disposal. Overall, embodied energy in a building has two primary components, direct energy and indirect energy [40, 46-48]:

Direct Energy: Energy consumed in onsite and offsite operations, such as construction, prefabrication, assembly, transportation and administration (see Figure 1).

Indirect Energy: Energy consumed in manufacturing the building materials, in renovation, refurbishment and demolition processes of the buildings. This includes *initial embodied energy, recurrent embodied energy and demolition energy*. Initial embodied energy is consumed during the production of materials and components and includes raw material procurement, building material manufacturing and finished product delivery (transportation) to the construction site. Recurrent embodied energy is used in various maintenance and refurbishment processes during the useful life of a building. Demolition energy is expended in the processes of a building’s deconstruction and disposal of building materials (see Figure 1).

2. **Operational energy (OE)**: Energy expended in maintaining the inside environment through processes such as heating and cooling, lighting and operating building appliances. The focus of this paper is not on operational energy (see Figure 1).

Insert Figure 1 here

3. **Significance of Embodied Energy**

Until recently, the emphasis of energy conservation research was on the operational energy of a building, while embodied energy was assumed to be relatively insignificant. However, current research has invalidated this assumption and found that embodied energy accounts for a significant proportion of total life cycle energy [3, 48, 49]. Operational energy conservation may be accomplished with readily available energy efficient appliances, advanced insulating materials and the equipment of building performance optimization [1, 6, 38, 50-52, 53]. For example, an increase in the number of Energy Star labeled home appliances in the United States could reduce operational energy gradually [54] (see Figure 2). Embodied energy, however, can only be reduced if low energy intensive materials and products are selected at the initial stages of building design.

Insert Figure 2 here

As buildings become more energy efficient over time, the relative proportion of embodied energy in the total life cycle energy increases [3, 5, 6-8, 27, 41, 50, 52, 55, 56]. Sartori and Hestnes [38] conclude, after reviewing 60 case studies from past literature, that for a conventional building, the embodied energy could account for 2-38 percent of the total life cycle energy, whereas, for a low energy building, this range could be 9-46 percent. Thormark [57] asserts that embodied energy of a low energy house could be equal to 40-60 percent of total life cycle energy.

Recently, Huberman and Pearlmutter [28] have determined that the embodied energy in a climatically responsive building in Negev desert region in Israel is 60 percent of total life cycle energy (50 year service life). However,
Plank [6] concludes that in the United Kingdom, a heating dominated region, the embodied energy accounts for only 10 percent of the total life cycle energy. Nebel et al. [8] explain that the proportion of embodied energy in total life cycle energy depends on geographic location and climate. In heating dominated regions, embodied energy represents a relatively low percentage of total life cycle energy, which may not be true for a moderate or cooling dominated region due to the latter’s relatively lower operational energy [8]. Little agreement exists on the importance and relative proportion of embodied energy in total life cycle energy of a building [7].

Gonzalez and Navarro [22] assert that building materials possessing high-embodied energy could result in more carbon dioxide emissions than would materials with low embodied energy. Hegner [4] and Black et al. [10] explain embodied energy as a sum of energy types that are available in limited amounts (non-renewable). Other authors [4, 10, 29, 58-62] have indicated that energy consumption in buildings directly relates to greenhouse gas emissions and eventually, global warming. Studies such as Rosello-Batle et al. [9] and Black et al. [10] discuss the close relationship of environmental impacts to the energy consumption in buildings. Recent studies on embodied energy calculations, such as [29, 63, 64], have already started distinguishing the non-renewable fraction of the total energy in buildings so as to indicate the greenhouse gas emission potential. Black et al. [10] cite energy use tables (2006) provided by Natural Resources Canada, according to which building sector contributes 29 percent of total secondary energy use and nearly 27 percent of total greenhouse gas emissions in Canada.

Among primary embodied energy determination methods are statistical analysis, process-based analysis, economic input/output-based analysis and hybrid analysis. These methods differ in their collection of data about energy inputs in the main (e.g. material production) and support processes (e.g. administration) [1, 11, 32, 48, 59, 65-68]. Each of these currently used methods possesses advantages as well as disadvantages, which are discussed in [11] and also in later sections of this paper. References [68-71] have used these methods to calculate embodied energy in buildings and building materials. Incompleteness and inaccuracy are two key issues associated with these methods, which may cause variation in embodied energy values [2, 65, 66].

Assessment of total energy in buildings should be performed keeping a life cycle perspective, which may include energy and material inputs during all life cycle stages [6, 9, 32, 64, 66, 72, 73]. Furthermore, there is a growing interest in adopting a life cycle approach in current research in this area. Research studies have used Life Cycle Assessment to calculate embodied energy in buildings, building materials and assemblies. In fact, current embodied energy calculation methods exist in LCA models. LCA is an effective tool for measuring embodied energy in buildings; however, it is data intensive and requires robust data [73, 74]. Embodied energy calculation is one of many components (e.g., other life cycle energy use, greenhouse gas emissions, global warming potential, toxicity, etc.) of the process of LCA of a material or a product [21, 26]. Lawson [26] informs that the LCA can be used for measuring energy consumption and energy usage in a material’s useful life. Lenzen [75] comments on the
relationship of embodied energy and LCA, stating that the “entire philosophy of life cycle assessment builds on the notion that energy (and other sources and pollutants) is passed on by being embodied in the intermediate products and materials that are then passed on between producers, until that reach the final consumers.” Embodied energy in the context of LCA could represent energy consumption, greenhouse gas emissions and depletion of nonrenewable fossil fuel sources. Crosbie et al. [62] mention an Environment Assessment Trade-off Tool (EATT) that is based on a Life Cycle Cost Assessment (LCCA) and LCA of embodied energy in buildings.

A variety of LCA tools in the form of software exist, along with datasets of environmental impacts of building materials. These tools, such as ATHENA, BEES 4.0, Ecoinvent, Eco-Quantum, Envest 2, OPTIMIZE, LICHEE, SimaPro etc. provide a user-friendly approach to determine life cycle impacts of a building [32, 66, 76, 77]. However, most of these do not cover all stages of a building’s life cycle. Furthermore, none of the existing tools and datasets possesses the capability to perform a full life cycle assessment of a building [32, 66, 76, 77].

Most embodied energy calculations performed as a part of LCA by past research studies followed LCA ISO standards (2006). Research studies that focus solely on embodied energy measurement either did not mention whether or not they followed any standards, or followed ISO standards (see Table 2). Most current databases of embodied energy include data that are derived using guidelines set forth by the International Standardization Organization (ISO) for Life Cycle Assessment (LCA). Hammond and Jones, under the Carbon Vision Buildings Program at the University of Bath, England, are establishing one large and comprehensive database of energy and carbon embodied in building materials [78]. One criterion for selecting energy data used by this study includes data that comply with ISO standards [59]. Crawford [79] has performed the embodied energy assessment using process analysis based on the ISO 14040 standards. Huberman and Pearlmutter [28] and John et al. [63] refer to ISO 14040 standards while conducting life cycle energy analyses (that include embodied energy). Table (2) presents a list of research studies, along with their selected types of data analysis and the standards they followed.

The processes of both LCA and embodied energy analysis are discussed in this manuscript, as all referred LCA studies involve embodied energy calculations. Literature related to both processes is referred to and cited in the paper.

4.1 Literature Opinion on LCA Use in Buildings

LCA, which was originally designed to evaluate a manufactured product’s life cycle in terms of its environmental impacts, cannot be directly applied to buildings. Using LCA to assess the impacts of a life cycle is not straightforward due to multiple reasons [30-32, 74, 100-103]. Buildings are large in size, complex and unique in nature and their construction often involves the assembly of a range of manufactured materials and products. These materials, products and construction processes may hold a variety of environmental impacts that are difficult to track. Buildings possess a much greater life span than most other products; tracking and assessing such a long span requires considerable effort in terms of data collection and interpretation. Furthermore, buildings are dynamic in nature and undergo changes, such as alteration, extension and renovation, and include activities, such as
maintenance and replacements that further complicate the process of collecting relevant information [30, 32, 74, 102, 103]. Unlike other manufactured products, building production processes are less standardized, making data collection a difficult task. To further complicate the matter, a building’s delivery process involves a number of key players having different motivations [30, 32, 74, 102, 103]. The lack of reliable and accurate information and the limited information about energy and environmental impacts of building materials and components hamper the LCA process for a building [30].

5. Problem of Variations in Embodied Energy Data

Previous studies of embodied energy analysis and computation exhibit considerable variation in embodied energy results owing to numerous factors [1, 3, 6, 7, 11, 17, 48, 50, 56, 65, 104-108]. Dixit et al. [11] calculate a standard deviation of 1.56 GJ/m² and 5.4 GJ/m² in embodied energy values of residential and commercial buildings, respectively, as reported by studies cited in Ding [1]. Worth [109], Pears [16] and Pullen [17] warn that the databases evolved to this point are inconsistent and show significant variability. Past and present research has pointed out errors and variations in embodied energy figures. Pears [16] asserts that the different information sources and inclusion of either primary or secondary energy could result in 30 to 40 percent variation in reported embodied energy. Lenzen [67] warns of a possible truncation error in the conventional process analysis, which could be as great as 50 percent, depending upon the product and its manufacturing process under consideration. In fact, the incompleteness in conventional process-based analysis could be as large as 20 percent [110]. Pullen [111] notes that process analysis does not include upstream processes (raw materials extraction and transportation) and some downstream processes (transporting finished products to construction sites) and, thus, its results are inconsistent. Datasets that exhibit variability cannot be compared and the goals of environmental labeling and low embodied energy material preference cannot be reached [1, 17, 35, 67, 106, 109]. Worth [109] asserts that current data with these problems cannot contribute fully to energy conservation practices.

5.1 Impact of Embodied Energy Variation on Current Environmental Practices

5.1.1 Eco-labeling

Eco-labeling of products includes informing consumers about the environmental characteristics of a product [12, 15, 112, 113] and it has been adopted as an important tool to evaluate products in environmental quality terms [15, 20, 25, 112, 114]. Hes [15] perceives eco-labeling to be a market driven tool that can promote environmentally preferred products across the globe. Energy consumption (embodied energy in products) and energy conservation are the environmental characteristics included in eco-labeling schemes [114, 115]. The United Kingdom Eco-labeling Board has indicated grave concerns for embodied energy in building materials and material use in the construction industry [116]. Analytically, LCA takes into account the whole life cycle impact of the product, hence, it provides necessary support to environmental assessment tools, such as eco-labeling [74, 101, 115].
The success of eco-labeling depends on the choice and weight of evaluated criteria and the quality of the data; hence, data quality is an important consideration in eco-labeling schemes [14]. The embodied energy of a product is a useful criterion for judging environmental performance [14, 25]. Johnston [13] warns that if eco-labels did not provide correct and relevant information, the decision-making and product preference would be relatively weak.

5.1.2 Environmental Preference of Materials or Products

Environmental selection of materials or products could result in greater energy use savings and an eventual decrease in CO₂ emissions due to energy production [21-23]. Atkinson et al. [21] found that the energy savings, due to environmental preference, could be as large as 20 percent, while Thormark [23] determined a reduction of 17 percent and an increase of 6 percent in embodied energy values due to the right or wrong selection of materials, respectively. It is important to identify low embodied energy materials or products in order to enable building professionals, who are involved in decision-making, to make environmentally benign choices [12, 20, 37, 117-120].

Unfortunately, industry lacks reliable information about the amount of energy embodied in a material or product that could be used for the purpose of environmental preference [20]. Consequently, uncertain information about embodied energy is available to people involved in decision-making and their decisions are influenced by this uncertainty [16]. Differing energy values hamper the process of selecting environmentally friendly materials that may involve comparing two products’ energy intensity terms [16, 24, 109, 121]. Such comparisons, if performed, are not valid, as they are based on differing energy data [17, 21, 121, 122].

5.1.3 Green Building Rating Systems

Embodied energy in buildings and their constituent materials and components can be used as an important criterion in green building assessment systems [123-127]. Green building assessment systems e.g. BREEAM, HK-Beam, BEPAC, HQE, VERDE, and GBTOOL, include the issue of embodied energy clearly in their green building evaluation criteria [125, 128-131]. In particular, Green Globe and LEED, through evaluation criteria like reduction in material consumption and use of locally available materials, acknowledge the importance of embodied energy in the green building assessment process [123, 129, 130, 132].

The calibration of embodied energy contents is complex and as a result, it is often not performed [130, 133]. Unavailability of accurate data and lack of appropriate tools limit the potential of embodied energy to be a vital criterion in environmental assessment of buildings [127, 133-135]. Crosbie et al. [62] discuss a performance based building energy code that could regulate the total (embodied and operational) energy consumption in a building.

6. Research Needs Suggested by Relevant Literature

A review of past and recent literature on LCA and embodied energy research is presented below. Three recommendations are identified in this review of literature that point out a necessity to derive and follow a set of standards or a protocol while performing an embodied energy measurement (see Table 3).
6.1 Missing a Robust Database of Embodied Energy

Crawford et al. [42] and Peereboom et al. [136] suggest that necessary information for decision-making is either not available or is available in an unusable form. Furthermore, the authors conclude that “unreliable and incomplete data” about the energy contents of building materials and assemblies often hamper the process of decision-making. In order to realize greater environmental benefits, development and availability of a robust (relatively accurate and complete) and reliable embodied energy database (that assures data quality and representativeness) is essential [8, 12, 17, 20, 33, 42, 59, 66, 136]. Pears [16] and Raynolds et al. [18] argue that creation of such a database is possible only if validation, standardization and comparability are introduced in current research efforts. Material selectors would be in a better position to evaluate and prefer a particular material if a sound database of magnitude of energy consumption as well as greenhouse gas emission were made available to them [40, 109].

Insert Table 3 here

6.2 Lack of Standard Methodology for Embodied Energy Calculation

The field of embodied energy research lacks a standard methodology to accurately and completely determine energy embodied in a building [7, 32, 65, 66, 77, 149]. Existing methods are either incomplete or inaccurate, and hence, they produce differing results. According to Ting [66], a significant improvement is urgent in order to develop a standardized approach to measure the energy embodied in a building. Frey [7] asserts that embodied energy research is “plagued with methodological issues” and lacks “scientifically agreed upon” standards and methodology. Moreover, the author points to uncertainty in data collection and undefined system boundaries.

6.3 Need to Develop a Protocol for Embodied Energy Measurement

Pullen [17] warns that the development of a sound embodied energy method requires addressing the problems associated with data quality. Studies, such as Pears [16], Pullen [17], Lippiatt and Norris [137], previously emphasized the derivation of a set of guidelines to address these problems and to make the selection of less energy intensive materials easier for building practitioners.

Recently, a National Institute of Standards and Technology technical note [154] referred to the missing embodied energy standards as a barrier to sustainability and set it forth as a priority. Menzies et al. [149] argue that, in spite of the number of efforts to conduct LCA and establish inventories, no global protocol has been developed that could treat problems in LCA or embodied energy results. An Insulation Council of Australia and New Zealand [147] media release comments that there exists no international protocol for measuring embodied energy in building materials. A demand for a national set of standards for measuring embodied energy is also observed by studies such as [148] and [20], as existing international standards may not be suitable for differing local conditions. Fernandez [20] also suggests developing embodied energy standards at the regional level in order to consider and address climatic differences at the national level.
The Federal Stimulus Package for energy efficiency and energy conservation project in the United States requires construction and major renovation projects to perform LCA and embodied energy calculations for building materials used (Bill, SB 5385). Moreover, SB 5385 requires the Department of General Administration to evolve guidelines for the establishment of a method for embodied energy calculation in building materials. The bill also seeks the use of low embodied energy building materials in construction and major renovation projects that receive funds from the stimulus package [152].

7. How to Standardize the Embodied Energy measurement Process?

Dixit et al. [11] identify parameters that not only define embodied energy but also govern the quality of embodied energy data. Moreover, if these parameters are deferred among embodied energy calculations, a variation is observed in the end results. Literature, as discussed earlier, reflects the need for a standard protocol that streamlines the process of embodied energy measurement. Any such effort would remain incomplete without a literature survey of existing standards, as it would be important to know whether or not these standards are successful in streamlining the LCA process. The following sections (7.1 and 7.2) describe in detail the parameters causing variation in embodied energy results and a literature survey of currently used standards.

7.1 Parameters Responsible for Variation in EE data

The review of relevant literature reveals ten parameters that are responsible for affecting the quality of embodied energy results adversely [11]. These parameters are presented in the form of a matrix, along with the research studies supporting them, elsewhere [11] as well as in this paper (see Table 4). Table 4 provides an updated list of literature sources that discuss these parameters, and the following sections describe the parameters.

Insert Table 4 here

7.1.1 System Boundaries

The system boundary defines the number of energy and material inputs that are considered in the embodied energy calculation. Stages, such as raw material extraction in distant upstream, and demolition and disposal in farthest downstream, should be included in system boundaries. Research studies have adopted different system boundaries and, as a result, their measurement figures vary and cannot be compared with each other (1, 7, 32, 33, 35, 42, 59, 67, 101, 106, 159) (see Figure 3).

Insert Figure 3 here

7.1.2 Methods of Embodied Energy Measurement

Process analysis, statistical analysis, input output analysis and hybrid analysis are among the major methods used for embodied energy computation [1, 6, 32, 46-48, 56, 67, 111, 162]. These methods possess different limitations and their level of accuracy varies. As a result, their embodied energy results differ [6, 32, 35, 36, 50, 56, 105, 106, 108, 111]. Process analysis is accurate, as it takes into account energy and material input in each process. This, however, becomes difficult, as some upstream and downstream processes could not be tracked accurately. Thus, process
analysis suffers from incompleteness [32, 66, 79, 90]. Input output analysis is complete, as it is based on economic input output data for the entire construction sector; however, such analysis involves data aggregation that makes its results relatively inaccurate [32, 66, 79, 90].

7.1.3 Geographic Location of the Study

Research studies performed in different countries differ from one another in terms of data relating to raw material quality, production processes, economy, delivered energy generation, transportation distances, energy use (fuel) in transport, and human labor. This eventually affects the determination of energy consumption and their results vary significantly [1, 16, 17, 26, 32, 38, 56, 67, 104, 108, 153, 161, 163]. Processes of industrial and economic sectors differ greatly and thus influence the calculated embodied energy values [104]. Different locations of data could affect the embodied energy results because of variations in production processes and energy tariffs [111].

7.1.4 Primary and Delivered Energy

Primary energy is defined as “the energy required from nature (for example, coal) embodied in the energy consumed by purchaser (for example, electricity)” and delivered energy is defined as “the energy used by the consumer” [46, 164]. The measurements of embodied energy are consistent if they are based on primary energy [46], but if delivered energy is considered, the results could be misleading and ambiguous [38, 46]. Furthermore, both operational and embodied energy must be measured in terms of primary energy consumption in order to attain consistency and to acquire the most appropriate environmental implications, such as greenhouse gas emissions [27, 46, 165-167].

7.1.5 Age of Data Sources

Research studies based on old and current data sources could differ significantly as a result of the changing technology of manufacturing and transportation. Consideration of old transportation energy data could affect energy values, as new vehicles have more fuel efficiency and a different fuel structure. Any study based on such conflicting data sources could be misleading and uncertain and the end results could vary considerably [7, 33, 89, 136, 141]. Building material performance and material production efficiency would be enhanced over time and could be responsible for variations in measurement figures [48, 104, 111]. Hammonds and Jones [150] attempt to consider current data sources in establishing the inventory of carbon and energy because of their relevance, certainty and temporal representativeness.

7.1.6 Source of Data

Research studies use data that are collected using different approaches. Some studies derive their own data by calculating the energy intensiveness, while others utilize energy figures calculated by other studies. This subjective selection of data influences the final results significantly [1, 6, 32, 56, 157, 160]. Peereboom et al. [136] suggests that practitioners of Life Cycle Analysis (LCA) rely on various sources of information and do not have access to
primary data, which leads to uncertainty and variability in LCA results. Data source is an important parameter, and its reliability, certainty, and transparency must be considered when performing LCA [67, 141].

7.1.7. Data Completeness

According to Menzies et al. [149] and Peereboom et al. [136], research studies often do not have access to primary data sources and rely on secondary data sources that may or may not be complete. This incompleteness is due to either the limitations of the calculation method or subjective selection of system boundaries. Menzies et al. [149] assert that the accessibility of data, methodology adopted, and selection of system boundaries govern data completeness, which could affect the reliability of end results significantly. Data completeness must be considered while choosing one material dataset over another [31, 32, 40, 141].

7.1.8 Technology of Manufacturing Processes

Differing technologies of material manufacturing possess varied levels of energy consumption, as advanced technology could consume less energy due to energy efficient processes. In the similar geographic location and during the same time period, two studies could generate different results if they are extracting information from two material manufacturers using different technologies [16]. Technological representativeness is an important quality of data that should be taken into account in order to eliminate inconsistency and variability of results [2, 32, 33, 56, 67, 136, 149, 153, 155].

7.1.9 Feedstock Energy Consideration

Feedstock energy is the energy embedded in the ingredients used in the process of manufacturing a material. Petrochemicals, such as oil and gas, are used as a material input in the manufacturing process of products, e.g. plastics and rubber. Feedstock energy needs to be considered in the calculation of the total embodied energy in a material [150]. Inclusion of feedstock energy in embodied energy calculation or LCA could cause variations in embodied energy figures, and such figures are not comparable across research studies [111].

7.1.10 Temporal Representativeness

A significant data quality indicator in embodied energy analysis and LCA is temporal representation [32, 33, 56, 136, 141, 157, 160, 161, 168]. Some energy studies are based on recently developed technology, and some studies consider a mix of new and old technology [169]. The end results of such studies differ and are not consistent.

This list of parameters is not exhaustive and may include more factors that are responsible for variations. Alcorn and Woods [141] and Peereboom et al. [136] do not rule out the possibility of existence of other parameters.

7.2 Survey of Current Standards Used for Embodied Energy Measurement

Past studies that involved the calculation of embodied energy in building and building materials either did not mention using any standard or used standards provided by ISO and the Society for Environmental Toxicology and
Chemistry. ISO and SETAC are the two key organizations that are working towards standardization and scientific development of LCA [34, 112, 121, 143, 170-174]. In 2006, ISO reviewed and updated its existing suite of standards for conducting LCA. In spite of the existence of ISO LCA standards, current literature (before and after 2006) emphasizes the need to establish a robust database of embodied energy of building products using a separate embodied energy standard. Research studies from 1993 [109] through 2010 [59] have been indicating an urgency to address the issue of a lack of consistent and accurate embodied energy data. It would be vital to survey currently used standards and to seek the opinion of literature about their performance in streamlining and standardizing the process of LCA.

7.2.1 ISO – International Standardization Organization

The ISO 14040 standards for LCA define the various terms used in LCA practice and provide a general description of LCA. Furthermore, it outlines the methodological framework to execute all four steps of a typical LCA: goal and scope definition, life cycle inventory analysis (LCI), life cycle impact assessment (LCIA), and life cycle interpretation. The international standards mention the general and specific requirements for each of the four phases, along with the requirements for result reporting and critical review of the performed research.

The ISO 14044 standards list the requirements and guidelines in detail and address issues related to allocation and system boundaries. The standards describe data and data sources, and state data quality requirements (in the form of data quality indicators) to ensure higher quality data. Moreover, explanation is also given for the treatment of missing data or data gaps in the LCA database. ISO 14044 standards also frame general requirements and considerations, additional requirements and guidance for the third party reporting and requirements to disclose results for comparison or to the public. Finally, they elaborate types of critical reviews and explain the techniques to carry them out.

7.2.2 SETAC – Society for Environmental Toxicology and Chemistry

The Society for Environmental Toxicology and Chemistry has had greater influence on the development of LCA for a long time. SETAC has established groups to address the problems and issues related to data quality. A working group called “Data availability and data quality” was formed in April 1998 to improve the quality of LCA data [176]. Fava [170] notes that SETAC has been heavily involved in the development of LCA terminology and technical framework. Furthermore, SETAC has collaborated with the United Nation’s Environmental Program
(UNEP) to form a group called UNEP/SETAC Life Cycle Initiative that is dedicated to evolving tools for evaluating various products. Cole [177] claims that “SETAC offers the most comprehensive and widely cited LCA methodology.”

1. SETAC: Guidelines for Life Cycle Assessment – A Code of Practice

This document provides direction to LCA methodology by describing the general principles and framework to execute, review, present and use the results of LCA [178]. The framework, as suggested by SETAC, incorporates four phases of LCA, such as goal definition and scoping, inventory analysis, impact assessment and improvement assessment. Finally, an analysis and interpretation of the results is discussed. Topics, e.g. data quality, LCA applications and limitations, are stated and discussed in later sections. Reporting requirements are demarcated and listed (in the form of elements of the report) in the chapter on presentation and communication. The requirement and process of peer review is discussed and various terms relating to LCA are defined in the last section of SETAC. This document, which later provided the foundation to ISO LCA standards, was developed to help LCA practitioners with decision-making and to enhance the credibility of the LCA process [112, 170, 179].

7.2.3 ASTM: American Society for Testing and Materials

ASTM E 1991 provides directions for conducting LCA for buildings, building materials and products for the purpose of decision-making and determining building material preference. This document was developed to assist the construction industry so that people who specify and select building materials can make environmentally informed decisions, and people involved in the building and marketing of buildings and materials can evaluate materials in environmental terms. ASTM E 1991 refers to the ISO 14040 series for evolving guidelines to conduct LCA of buildings and building materials or products.

7.3 Critical Review of Current Standards: Contentious Issues

The incompleteness and uncertainty of available data and the lack of standard and comparable methodology adversely affect the process of decision-making [137]. Fava [170] claims that the ISO 14000 family has evolved and set up the rules and guidelines for conducting LCA worldwide in a consistent and reproducible manner. Weidema et al. [151] argue that, despite the currently available standards for LCA, along with product declaration and greenhouse gas accounting, individual efforts to create methodology and guidelines still exist. Among the major efforts is the UK Carbon Footprint Label as a Public Available Standard (PAS) that is being developed at the request of the Carbon Trust and British Department of Environment, Food and Rural Affairs (DEFRA). British Standards (BS) aim to develop standards that are rigorous but easily applicable [151]. However, Weidema et al. [151] question, “Do we need additional standards?” and state, “The existing ISO standards are vague on several crucial points.”
In spite of so much standardization effort, the LCA process still needs more clarification and improvement. Hammond and Jones [150] claim that it would be ideal to comply with ISO standards; however, studies that follow ISO standards still reflect significant differences in the end results. Lu et al. [180] warn that simply complying with ISO LCA standards would not guarantee a high quality LCA, as some issues in these standards need clarification. Heijung et al. [181] point out the factual errors in ISO LCA standards, such as mentioning total Global Warming Potential (GWP) of carbon dioxide as 2750 kgs instead of one kg. Research studies, such as Weidema et al. [151], Jeswani et al. [182], Jones [183], Heijung et al. [181], Zamagni et al. [34], Reap et al. [33], Suh et al. [145], Rebitzer et al. [143] and Raynolds et al. [18] point out the problems associated with the issues of system boundaries and allocation in current ISO standards for LCA. Referring to literature regarding critical reviews of SETAC and ISO standards identifies the following issues.

7.3.1 System Boundaries: There is a lack of clarity, subjectivity and an issue of truncation error in the current system boundary selection criteria and procedures mentioned by LCA standards [18, 33, 34, 143, 145, 151, 181, 182]. Weidema et al. [151] refer to system boundary and co-product allocation in ISO standards when they state that the “ISO 14044 LCA standard is unnecessarily open for misinterpretation.” Furthermore, the cutoff rules for system boundaries are presented in an ambiguous and complicated manner [34, 151, 181]. For example, ISO 14040 standards recommend including all processes, directly or indirectly related to a product’s main manufacturing process; however, later it states that the processes with no significant influence on the end results could be excluded [34]. Moreover, Suh et al. [145], Raynolds et al. [18] and Zamagni et al. [34] notice that the ISO standards mention unit process inclusion in the assessment in terms of percentages (e.g. 90 percent of mass flow or 99 percent of total energy demand), but the problem is practitioners never know when these limits are reached because they are not aware of all the data for the entire system. This makes it impossible to comply with the system boundary selection method for ISO standards. Suh et al. [145] and Raynolds et al. [18] claim that it is impossible to select a system boundary that truly complies with ISO standards. Raynolds et al. [18] state, “The ISO method of system boundary selection is rigorous and robust in theory, but in practice fails.”

7.3.2 Allocation: It is still unclear which approach must be adopted for the purpose of allocation as there is disagreement regarding current approaches. The feasibility of the current method of allocation is questionable according to critiques [18, 33, 34, 143, 145, 151, 181]. Zamagni et al. [34] argue that the ISO procedures for allocation in LCA are prone to conflicting interpretations and researchers at times do not agree with these procedures. Reap et al. [33] assert that the manner in which ISO standards deal with system boundaries and allocation issues in LCA introduces subjectivity and truncation error into the assessment. Zamagni et al. [34] state that the ISO permits selection of any LCA method and adds subjectivity to it.

7.3.3 Methodology for Calculation: Heijung et al. [181] observe that existing ISO LCA standards for performing LCA calculations provide no mathematical model, formula or expression. The ISO framework lacks clear procedural guidance during the interpretation phase of LCA. “The methodological framework as in ISO standard is often judged too narrow for the application needed,” Zamagni et al. [34] add. Furthermore, the ISO standards for LCA mention a framework for the LCA steps but fail to provide sound methodology to execute these steps.
Furthermore, Suh et al. [145] suggest that an input/output-based approach must be incorporated into current ISO standards for LCA that are currently based on process-based analysis.

Curran and Young [184] and Smith and Peirce [185] feel the need for a genuine methodology for performing LCA. Trusty [12] states that the Life Cycle Inventory program, which is a part of the UNEP/SETAC Life Cycle Initiative, emphasizes methodological issues on which “ISO may be silent or insufficiently prescriptive.” The review of literature indicates that the methodology prescribed by the ISO LCA standards is still unclear [12, 34, 171, 184, 185].

7.3.4 Sensitivity and Uncertainty Analysis: According to the literature, the current international standards mention conducting a sensitivity and uncertainty analysis but fail to provide an appropriate method for performing them [33, 34, 121, 181].

7.3.5 Data Availability and Quality: In spite of existing LCA standards emphasizing data quality, issues of reliable, accurate and complete information remain unaddressed [33]. Issues relating to data representativeness, data availability and quality remain top priorities for streamlining the LCA process [33]. Data reliability and incompleteness are two major issues that affect LCA data inventory significantly [186].

8. Recommended Approach to Embodied Energy Protocol

Parameters that differ and influence the reported embodied energy values are already identified in this paper and elsewhere [11]. A survey of ISO LCA standards and their critiques indicates that issues, such as system boundary definition and selection, data quality and method of embodied energy measurement, require clarification. A set of guidelines can be developed, which incorporates treatment for differing parameters and clarifications on issues that ISO LCA standards fail to provide (see Figure 4). These guidelines may be derived by seeking and analyzing scholarly opinion and recommendations on an embodied energy definition and on treatment of differing parameters. Figure 4 demonstrates a possible approach for developing guidelines that could establish a set of standards.

Most of the identified parameters are either related to data quality or to issues such as system boundary and energy calculation methods. Therefore, guidelines should include, at minimum, embodied energy and other relevant definitions, an embodied energy model for buildings and its components, rules for system boundary selection, a method to measure embodied energy, data quality requirement and data treatment issues (in case of lacking data representativeness). These would provide a foundation for successfully developing and implementing a standard protocol.

This paper anticipates that these guidelines could be further developed and transformed into an embodied energy protocol that could be applied globally. Such a protocol would provide directions on data representativeness issues, such as geography, time and technology. Differences of geography, time and technology may be resolved by deriving a system that translates data belonging to one study into another study of interest (with differing conditions of geography, time and technology). Such a system would help introduce global comparability to current energy
The embodied energy measurement protocol would address issues relating to inaccuracy and inconsistency of embodied energy data and would help streamline embodied energy analysis as well as the LCA process for a building.

9. Summary

Both the embodied, as well as operational, energy in a building are important and their relative proportions of the total life cycle energy use vary depending on factors such as geographic location, fuel use, etc. Multiple studies have discussed the growing significance of embodied energy, as a larger number of buildings are becoming energy efficient and energy independent over time. Embodied energy could be a genuine indicator of greenhouse gas emissions, and hence, could be used to assess environmental impacts also. However, the current state of research is plagued by a lack of accurate and consistent data and standard methodology.

This paper emphasizes and updates a list of parameters that are responsible for causing data variation and inconsistent results. A review of literature indicates a need to develop an embodied energy protocol that could help streamline the embodied energy analysis process. This calls for a survey of standards that are currently being used in order to evaluate their performance. In the past, SETAC published LCA guidelines that later provided a foundation for ISO LCA standards. ISO standards for LCA were updated in 2006, and have evolved into two standards, ISO 14040 and ISO 14044. Critical reviews of these standards suggest that they fail to provide complete guidance to LCA studies. Furthermore, critiques point out certain issues that need be resolved in order to simplify and streamline the LCA process.

As suggested by the literature review presented in the manuscript, a possible solution may be to develop a set of guidelines to address differing parameters and unresolved issues. A possible approach, as recommended in this paper, is to develop guidelines for embodied energy measurement that could pave the way to an embodied energy protocol.

10. Future Research

A consensus on embodied energy definition and system boundary selection rules could be a potential research work, as it could help create embodied energy calculation guidelines. Furthermore, assessment of parameter impacts identified in this and other published studies on embodied energy data would be vital for embodied energy research.

11. References

[153] D. Pittet, T. Kotak, Environmental impacts of building technologies, a comparative study in Kutch District, Gujarat State, India, In EPFL/UNESCO Chair International Scientific Conference on Technologies for Development, Lausanne, Switzerland, 8-10 February 2010

12. List of Tables

Table 1 Embodied energy definitions rendered by various studies
Table 2 A sample of literature available on embodied energy calculation
Table 1 Sources presenting critical review of ISO LCA standards and respective recommendations
Table 4: Matrix of parameters causing variation in embodied energy values, and their sources
13. List of Figures

Figure 1 Embodied energy model for the life cycle of a building (based on [11])
Figure 2 Growing Number of Energy Star approved building appliances (based on [48])
Figure 3 System boundaries and life cycle stages of a building
Figure 4 Proposed Approach to Establish Embodied Energy Protocol