1. A 24-foot-long steel beam is installed when the temperature is 45°F. How much will it expand if the temperature rises to 75°F? The coefficient of expansion of steel is 0.0000065.
 Answer: 0.056 in

2. What is the horizontal thrust at each end of the three-hinged arch shown below?
 Answer: 249.7 k

3. What is the moment about point O of the three forces shown above?
 Answer: 10,755 lb-ft

4. Complete text problem 2.4 on page 85.
 2.4 The following three forces act through a point: P at $\theta_s = 45^\circ$, $2P$ at $\theta_s = 180^\circ$, and P at $\theta_s = 270^\circ$. Find the equivalent resultant force. [See Figure 2.59(Q4).]
 Answer: $1.33P$ at 192.8°.

5. Complete text problem 2.7 on page 85.
 2.7 Determine the reactions for the structure shown in Figure 2.59(Q7).
 Answer: $R_A = 2667$ lb \(\uparrow\) and $R_B = 667$ lb \(\downarrow\).

6. Complete text problem 2.13 on page 85 for figure Q13c.
 2.13 Determine the reactions for the beams shown in Figure 2.59(Q13).
 Answer: $R_{Ax} = P/2 \rightarrow$, $R_{By} = P/2 \leftarrow$, $R_{By} = P \uparrow$.
7. Complete text problem 2.24 on page 86.

2.24 What is the unit strain present in an aluminum specimen loaded to 10,000 lb/in.²? Assume that $E_a = 11.3 \times 10^6$ lb/in.2.
Answer: 0.000885 in./in.

8. Complete text problem 2.27 on page 86.

2.27 A steel bar that is 20 mm in diameter is 5 m long and carries a tension force of 20 kN. How much does the bar elongate? Assume that $E_s = 0.204 \times 10^6$ N/mm2.
Answer: 1.56 mm.